Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exsolution of cummingtonite, actinolite and sodic amphibole in hornblende in high-pressure metamorphism

Abstract

Exsolution phenomena in amphiboles indicate the existence of miscibility gaps1,2. The phase relationships of hornblende, the commonest amphibole in igneous and metamorphic rocks, to the other monoclinic amphiboles such as cummingtonite, actinolite and sodic amphibole has particular petrological importance. In these systems a solvus has been directly confirmed by exsolution in the hornblende–cummingtonite system3–5. Chemical discontinuities suggesting miscibility gaps have been shown for other systems6–18. In the hornblende–actinolite system, which was recently confirmed to have a solvus by experimental synthesis19, fine lamellar texture that is too fine for microprobe resolution is expected to result from exsolution9,10. However, there has been no report of amphibole exsolution from high-pressure metamorphic rocks. We have found exsolution lamellae of three kinds of clinoamphibole, cummingtonite, actinolite and sodic amphibole, in a zoned hornblende from high-pressure metamorphic rock, and present here direct evidence to confirm the miscibility gaps between hornblende and these three clinoamphiboles in high-pressure metamorphic conditions. The genesis of exsolution lamellae discussed below is based on back-scattered electron-scanning images and microprobe analyses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ghose, S. Amphiboles and other Hydrous Pyriboles—Mineralogy (ed. Veblen, D. R.) 325–372 (Mineralogical Society of America, 1981).

    Book  Google Scholar 

  2. Robinson, P. et al. Amphiboles: Petrology and Experimental Phase Relations (eds Veblen, D. R. & Ribbe, P. H.) 1–227 (Mineralogical Society of America, 1982).

    Book  Google Scholar 

  3. Ross, M., Papike, J. J. & Weiblen, P. W. Science 159, 1099–1104 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Ross, M., Papike, J. J. & Wier Shaw, K. Miner. Soc. Am. Spec. Pap. 2, 275–299 (1969).

    CAS  Google Scholar 

  5. Tomita, K., Yamaguchi, Y. & Takita, R. Mem. geol. Soc. Jap. 11, 95–106 (1974).

    CAS  Google Scholar 

  6. Shido, F. & Miyashiro, A. J. Fac. Sci. Univ. Tokyo 12, 85–102 (1959).

    CAS  Google Scholar 

  7. Banno, S. J. Fac. Sci. Univ. Tokyo 15, 203–319 (1964).

    CAS  Google Scholar 

  8. Himmelberg, G. R. & Papike, J. J. J. Petrol. 10, 102–114 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Klein, C. Am. Miner. 54, 212–237 (1969).

    CAS  Google Scholar 

  10. Cooper, A. F. & Lovering, J. F. Contr. Miner. Petrol. 27, 11–24 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Ernst, W. G. Geol. Soc. Am. Mem. 135, 73–94 (1972).

    Google Scholar 

  12. Hietanen, A. Am. Miner. 59, 22–40 (1974).

    CAS  Google Scholar 

  13. Brady, J. B. Am. Miner. 59, 529–535 (1974).

    CAS  Google Scholar 

  14. Misch, P. & Rice, J. M. J. Petrol. 16, 1–21 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Tagiri, M. Contr. Miner. Petrol. 62, 271–281 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Ernst, W. G. Miner. Mag. 43, 269–278 (1979).

    Article  CAS  Google Scholar 

  17. Spear, F. S. Contr. Miner. Petrol. 72, 33–41 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Maresch, W. V., Medenbach, O. & Rudolph, A. Nature 296, 731–732 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Oba, T. Contr. Miner. Petrol. 71, 247–256 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Shibakusa, H. J. Geol. Jap. 80, 341–353 (in Japanese with English Abstr.) (1974).

    CAS  Google Scholar 

  21. Shibakusa, H., Gouchi, N. & Imaizumi, M. J. geol. Soc. Jap. 83, 301–303 (1977).

    Article  Google Scholar 

  22. Banno, S., Ishizuka, H. & Gouchi, N. Abstr Int. Geody. Conf., Tokyo, 14–15 (1978).

  23. Asahina, T. & Komatsu, M. J. geol. Soc. Jap. 85, 317–330 (1979).

    Article  Google Scholar 

  24. Castaing, R. Advances in Electronics and Electron Physics Vol. 13, 317–386 (Academic, New York, 1960).

    Google Scholar 

  25. Stout, J. H. J. Petrol. 13, 99–145 (1972).

    Article  ADS  CAS  Google Scholar 

  26. Robinson, P. & Jaffe, H. W. Miner. Soc. Am. Spec. Pap. 2, 251–274 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, Y., Shibakusa, H. & Tomita, K. Exsolution of cummingtonite, actinolite and sodic amphibole in hornblende in high-pressure metamorphism. Nature 304, 257–259 (1983). https://doi.org/10.1038/304257a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304257a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing