Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use

Abstract

The synaptic connections among the cells of the vertebrate nervous system undergo extensive rearrangements early in development1,2. During their initial growth, neurones apparently form synaptic connections with an excessive number of targets, later retracting a portion of these synapses in establishing the adult neural circuits. Because of the profound effects which experience has upon the developing nervous system3, a question of considerable interest has been the role which the functional use of these developing synapses might play in determining the final pattern of connectivity. At the neuromuscular junction the early changes in synaptic connections are well documented, and here questions about the importance of function can be relatively easily addressed. Mammalian skeletal muscle fibres experience a perinatal period of synapse elimination so that all but one of several synapses formed on each muscle fibre are lost4–6. This synapse elimination is sensitive to alterations of neuromuscular use or activity. Reduction of muscle use by tenotomy7,8 or by paralysis of the muscle with drugs blocking nerve impulse conduction9 or neuromuscular transmission10 delays or even prevents synapse loss, while increased use produced by stimulation of the muscle nerve11 apparently accelerates the rate at which synapses are lost. I report here a further examination of the role of neuromuscular activity in synapse elimination. I show that chronic neuromuscular stimulation accelerates synapse elimination but that this acceleration is dependent on the temporal pattern in which the stimuli are presented: brief stimulus trains containing 100 Hz bursts of stimuli produce this acceleration whereas the same number of stimuli presented continuously at 1 Hz do not. Furthermore, the 100 Hz activity pattern which is effective in altering synapse elimination also alters two other muscle properties: the sensitivity of the muscle fibres to acetylcholine and the ‘speed’ of muscle contractions. These findings suggest that the ability of muscle fibres to maintain more than one nerve terminal, like other muscle properties, is sensitive to the pattern of muscle use rather than just the total amount of use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Purves, D. & Lichtman, J. W. Science 210, 153–157 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Cowan, M. W. in Development in the Nervous System (eds Garrod, D. R. & Feldman, D. J.) (Cambridge University Press, 1981).

    Google Scholar 

  3. Harris, W. A. A. Rev. Physiol. 43, 689–710 (1981).

    Article  CAS  Google Scholar 

  4. Redfern, P. A. J. Physiol., Lond. 209, 701–709 (1970).

    Article  CAS  Google Scholar 

  5. Bennett, M. R. & Pettigrew, A. G. J. Physiol., Lond. 241, 515–545 (1974).

    Article  CAS  Google Scholar 

  6. Brown, M. C., Jansen, J. K. S. & Van Essen, D. J. Physiol., Lond. 261, 387–422 (1976).

    Article  CAS  Google Scholar 

  7. Benoit, P. & Changeux, J.-P. Brain Res. 99, 354–358 (1975).

    Article  CAS  Google Scholar 

  8. Riley, D. A. Brain Res. 143, 162–167 (1978).

    Article  CAS  Google Scholar 

  9. Thompson, W., Kuffler, D. P. & Jansen, J. K. S. Neuroscience 4, 271–281 (1979).

    Article  CAS  Google Scholar 

  10. Brown, M. C., Holland, R. L. & Hopkins, W. G. J. Physiol., Lond. 318, 355–364 (1981).

    Article  CAS  Google Scholar 

  11. O'Brien, R. A. D., Östberg, A. J. C. & Vrbová, G. J. Physiol., Lond. 282, 571–582 (1978).

    Article  CAS  Google Scholar 

  12. Weber, E. D. & Stelzner, D. J. Brain Res. 125, 241–255 (1977).

    Article  CAS  Google Scholar 

  13. Hall, W. G. Science 190, 1313–1315 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Hall, W. G. Science 205, 206–209 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Thompson, W. & Jansen, J. K. S. Neuroscience 2, 523–535 (1977).

    Article  CAS  Google Scholar 

  16. Lømo, T. & Westgaard, R. H. J. Physiol., Lond. 252, 603–626 (1975).

    Article  Google Scholar 

  17. Diamond, J. & Miledi, R. J. Physiol., Lond. 162, 393–408 (1962).

    Article  CAS  Google Scholar 

  18. Lømo, T., Westgaard, R. H. & Dahl, H. A. Proc. R. Soc. B187, 99–103 (1974).

    ADS  Google Scholar 

  19. Close, R. J. Physiol., Lond. 173, 74–95 (1964).

    Article  CAS  Google Scholar 

  20. Linden, D. C. & Fambrough, D. M. Neuroscience 4, 527–538 (1979).

    Article  CAS  Google Scholar 

  21. Ramirez, B. U. & Pette, D. FEBS Lett. 49, 188–190 (1974).

    Article  CAS  Google Scholar 

  22. Streter, F. A., Gergely, J., Salmons, S. & Romanul, F. Nature new Biol. 241, 17–19 (1973).

    Article  CAS  Google Scholar 

  23. Purves, D. in Function and Formation of Neural Systems (ed. Stent, G. S.) 21–49 (Dahlem Konferenzen, Berlin, 1977).

    Google Scholar 

  24. Jansen, J. K. S., Thompson, W. & Kuffler, D. P. Prog. Brain Res. 48, 3–18 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, W. Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. Nature 302, 614–616 (1983). https://doi.org/10.1038/302614a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302614a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing