Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity

Abstract

As first clearly demonstrated by the experiments of Wiesel and Hubel1, the developing visual cortex is exquisitely sensitive to sensory deprivation. Temporary closure of one eye of a kitten during a critical period that extends from 3 weeks to 3 months of age results in a dramatic cortical reorganization such that most neurones, originally binocularly driven, are dominated exclusively by the open eye. Recently, attention has been directed to chemical factors which may influence the degree of plasticity during the critical period. The work of Kasamatsu and Pettigrew2–6 suggests that cortical catecholamines, especially noradrenaline (NA), are essential for the normal plastic response to visual deprivation. In an effort to clarify the role of NA in visual cortical plasticity, we have monocularly deprived kittens whose cortex had been depleted of catecholamines by the neurotoxin 6-hydroxydopamine (6-OHDA)7–9. We used two strategies to deplete cortical NA: the first, pioneered by Kasamatsu et al.5, utilized osmotic minipumps to deliver 6-OHDA to visual cortex; the second involved systemic neonatal injections of 6-OHDA, a technique which has proved effective in rodents10–12. We found, using high-pressure liquid chromatography (HPLC), that both techniques produced a substantial reduction in the level of cortical NA. However, single unit recording in area 17 revealed that the plastic response to monocular deprivation (MD) was only diminished in the kittens depleted by minipump.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  2. Kasamatsu, T. & Pettigrew, J. D. Science 194, 206–209 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Pettigrew, J. D. & Kasamatsu, T. Nature 271, 761–763 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Kasamatsu, T. & Pettigrew, J. D. J. comp. Neurol 185, 139–162 (1979).

    Article  CAS  Google Scholar 

  5. Kasamatsu, T., Pettigrew, J. D. & Ary, M., J. comp. Neurol. 185, 163–182 (1979).

    Article  CAS  Google Scholar 

  6. Kasamatsu, T., Pettigrew, J. D. & Ary, M. J. Neurophysiol. 45, 254–266 (1981).

    Article  CAS  Google Scholar 

  7. Ungerstedt, J. Eur. J. Pharmac. 5, 107–110 (1968).

    Article  CAS  Google Scholar 

  8. Bloom, F. E., Algeri, A., Groppetti, A., Revuelta, A. & Costa, E. Science 166, 1284–1286 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Uretsky, N. J. & Iverson, L. L. J. Neurochem. 17, 269–278 (1970).

    Article  CAS  Google Scholar 

  10. Clark, D. W., Laverty, R. & Phelan, E. L. Br. J. Pharmacol. 44, 233–243 (1972).

    Article  CAS  Google Scholar 

  11. Sach, C. J. Neurochem. 20, 1753–1760 (1973).

    Article  Google Scholar 

  12. Sachs, C. & Jonsson, G. Brain Res. 99, 277–291 (1975).

    Article  CAS  Google Scholar 

  13. Daniels, J. D., Norman, J. L. & Pettigrew, J. D. Expl. Brain Res. 29, 155–172 (1977).

    Article  CAS  Google Scholar 

  14. Blasdel, G. G. & Pettigrew, J. D. J. Neuorophysiol. 42, 1692–1710 (1979).

    Article  CAS  Google Scholar 

  15. Hubel, D. H. & Wiesel, T. N. J. Physiol., Land. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  16. Anton, A. H. & Sayre, D. F. J. Pharmac. exp. Ther. 138, 360–375 (1962).

    CAS  Google Scholar 

  17. Keller, R., Oke, A., Mefford, I. & Adams, R. N. Life Sci. 19, 995–1004 (1976).

    Article  CAS  Google Scholar 

  18. Cannon, W. B. & Rosenblueth, A. The Supersensitivity of Denervated Structures (Macmillan, New York, 1949).

    Google Scholar 

  19. Sporn, J. R., Wolfe, B. B., Harden, T. R., Kendell, T. & Molinoff, P. B. Molec. Pharmac. 13, 1170–1180 (1977).

    CAS  Google Scholar 

  20. Harik, S. J., Bradford Duckrow, R., LaManna, J. C., Rosenthal, M., Sharma, V. K. & Banerjee, S. P., J. Neurosci. 1, 641–649 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bear, M., Paradiso, M., Schwartz, M. et al. Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity. Nature 302, 245–247 (1983). https://doi.org/10.1038/302245a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302245a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing