Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Can γ-ray bursts originate from low-mass binaries?

Abstract

γ-Ray bursts have been attributed to binary systems1–3 with the burst resulting from an accretion instability1,2, or a thermonuclear explosion at the surface of an accreting magnetic neutron star4–6. Recent deep sky surveys in the X-ray7–9 and optical wavelengths (S. Illovaiski and C. Chevalier, personal communication), impose stringent new limitations on the theory. Assuming an average distance of 300 pc, these observations limit the optical absolute magnitude of bursters in quiescence to Mv>13 and their X-ray luminosity to <1031 erg s−1 for polar cap accretion (K. Hurley, S. Illovaiski and G. Pizzichini, personal communication). If these are local binary systems in our Galaxy, as suggested by their isotropic distribution in the sky10,11, the binary companion would clearly have to be a very low mass object. Although very peculiar, the presence of such an ‘invisible’ companion is possibly hinted at by the recently proposed identification of the 19 November 1978 γ-ray burst to a 1928 optical transient event lasting 10 min discovered by Schaefer12. Motivated by these data, we examine here the possibility of obtaining such low luminosity systems as the evolutionary end products of galactic low-mass binary systems with a neutron star primary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lamb, F. K., Lamb, D. Q. & Pines, D. Nature phys. Sci. 246, 52 (1973).

    Article  ADS  Google Scholar 

  2. Harwitt, M. & Salpeter, E. E. Astrophys. J. Lett. 186, L37 (1973).

    Article  ADS  Google Scholar 

  3. Sunyaev, R. French-Soviet Workshop on γ-Ray Bursts, Paris (1981).

    Google Scholar 

  4. Woosley, S. E. & Taam, R. E. Nature 263, 101 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Woosley, S. E. & Wallace, R. K. Astrophys. J. 258, 716 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Hameury, J.M., Bonazzola, S., Heyvaerts, J. & Ventura, J. Ast. Astrophys. 111, 242 (1982).

    ADS  CAS  Google Scholar 

  7. Vedrenne, G. Phil. Trans. R. Soc. A301, 645 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Hurley, K. La Jolla Workshop on γ-ray Transients (1981).

    Google Scholar 

  9. Cline, T. L. et al., Astrophys. J. Lett. 246, L133 (1981).

    Article  ADS  Google Scholar 

  10. Puget, J. L. Astrophys. Space Sci. 75, 109 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Mazets, E. P., Golenetskii, S. V., Aptekar, R. L., Gurian, Yu. A. & Illinskii, V. N. Soviet astr. Lett. 6, 318 (1980).

    ADS  Google Scholar 

  12. Schaefer, B. E. Nature 294, 722 (1981).

    Article  ADS  Google Scholar 

  13. van den Heuvel, E. P. J. X-ray Astronomy (eds Giacconi, R. & Setti, G.) 115 (Reidel, Dordrecht, 1980).

    Book  Google Scholar 

  14. Pazcynski, B. Acta astr. 17, 287 (1967).

    ADS  Google Scholar 

  15. Faulkner, J. Astrophys. J. Lett. 170, L99 (1971).

    Article  ADS  Google Scholar 

  16. Paczynski, B. Acta astr. 31, 1 (1981).

    ADS  CAS  Google Scholar 

  17. Rappaport, S., Joss, P. C. & Webbink, R. F. Astrophys. J. 254, 616 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Taam, R. G., Flannery, B. P. & Faulkner, J. Astrophys. J. 239, 1017 (1980).

    Article  ADS  Google Scholar 

  19. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields (Addison-Wesley, Reading, 1962).

    MATH  Google Scholar 

  20. Zapolski, H. S. & Salpeter, E. E. Astrophys. J. 158, 809 (1969).

    Article  ADS  Google Scholar 

  21. Basko, M. M., Hatchett, S., McCray, R. & Sunyaev, R. A. Astrophys. J. 215, 276 (1977).

    Article  ADS  Google Scholar 

  22. Spitzer, L. Jr in The Atmosphere of the Earth and Planets (ed. Kuiper, G. P.) (University of Chicago Press, 1949).

    Google Scholar 

  23. Illarionov, A. F. & Sunyaev, R. A. Astr. Astrophys. 39, 185 (1975).

    ADS  Google Scholar 

  24. Colgate, S., Petschek, H. Astrophys. J. 248, 771 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, J., Bonazzola, S., Hameury, J. et al. Can γ-ray bursts originate from low-mass binaries?. Nature 301, 491–493 (1983). https://doi.org/10.1038/301491a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301491a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing