Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Developmental stability and enzyme heterozygosity in rainbow trout

Abstract

The developmental pathways of organisms are genetically adjusted to produce the characteristic morphology of the species regardless of variations in internal and external conditions during development. This ‘developmental buffering’, however, is not always precise. Bilateral characters of an organism are often asymmetric, that is, different in size, shape or number. Fluctuating asymmetry occurs when the difference between a character on the left and right sides of individuals is normally distributed about a mean of zero1. This type of asymmetry results from the inability of an organism to develop precisely along determined paths1,2 and can be used as a measure of developmental stability1,3–5. Increased developmental stability would be reflected by reduced amounts of fluctuating asymmetry. We have now examined the relationship between the amount of fluctuating asymmetry for five bilateral characters and heterozygosity at 13 polymorphic loci in a population of rainbow trout (Salmo gairdneri). Our results indicate a significant negative correlation between the proportion of heterozygous loci and the proportion of asymmetric characters. These data provide evidence that individuals with greater heterozygosity within a population have increased developmental stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van Valen, L. Evolution 16, 125–142 (1962).

    Article  Google Scholar 

  2. Mason, L. G., Ehrlich, P. R. & Emmel, T. C. Evolution 21, 85–91 (1967).

    PubMed  Google Scholar 

  3. Thoday, J. M. Heredity 12, 401–415 (1958).

    Article  Google Scholar 

  4. Soulé, M. Am. Nat. 101, 141–160 (1967).

    Article  Google Scholar 

  5. Felley, J. Copeia 1980, 18–29 (1980).

    Article  Google Scholar 

  6. Lerner, I. M. Genetic Homeostasis (Oliver and Boyd, Edinburgh, 1954).

    Google Scholar 

  7. Robertson, F. W. & Reeve, E. C. R. Nature 170, 286 (1952).

    Article  ADS  CAS  Google Scholar 

  8. Soulé, M. Evolution 33, 396–401 (1979).

    Article  Google Scholar 

  9. Kat, P. W. Am. Nat. 119, 824–832 (1982).

    Article  Google Scholar 

  10. Vrijenhoek, R. G. & Lerman, S. Evolution 36, 768–776 (1982).

    Article  Google Scholar 

  11. Mitton, J. B. Nature 273, 661–662 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Eanes, W. F. Nature 276, 263–264 (1978).

    Article  ADS  Google Scholar 

  13. Allendorf, F. W., Mitchell, N. J., Ryman, N. & Ståhl, G. Hereditas 86, 179–190 (1977).

    Article  CAS  Google Scholar 

  14. Allendorf, F. W. & Phelps, S. R. Ecol. Bull. 34, 37–52 (1981).

    Google Scholar 

  15. Ohno, S. Animal Cytogenetics 4 (Gebruder Borntraeger, Berlin, 1974).

    Google Scholar 

  16. Bailey, G. S., Wilson, A. C., Halver, J. C. & Johnson, C. L. J. biol. Chem. 245, 5927–5940 (1970).

    CAS  PubMed  Google Scholar 

  17. Paigen, K. in Physiological Genetics (ed. Scandalios, J. G.) 1–61 (Academic, New York, 1979).

    Book  Google Scholar 

  18. Allendorf, F. W., Knudsen, K. L. & Phelps, S. R. Genetics 102, 259–268 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sokal, R. R. & Rohlf, F. J. Biometry, 427–428 (Freeman, San Francisco, 1981).

  20. Barlow, G. W. Syst. Zool. 10, 105–117 (1961).

    Article  Google Scholar 

  21. Garside, E. T. J. Fish. Res. Bd Can. 23, 1537–1551 (1966).

    Article  Google Scholar 

  22. Ali, M. Y. & Lindsey, C. C. Can. J. Zool. 52, 959–976 (1974).

    Article  CAS  Google Scholar 

  23. Terner, C. Comp. Biochem. Physiol. 25 B, 989–1003 (1968).

    Article  CAS  Google Scholar 

  24. Boulekbache, H. Am. Zool. 21, 377–389 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leary, R., Allendorf, F. & Knudsen, K. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301, 71–72 (1983). https://doi.org/10.1038/301071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing