Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potential Z-DNA forming sequences are highly dispersed in the human genome

Abstract

Recent analyses of the three-dimensional structure of synthetic DNA molecules has revealed the existence of a left-handed double-helical conformation of DNA, called Z-DNA1–4. The Z-DNA structure was first observed in molecules having alternating guanine and cytosine bases1–3, but has now also been shown for molecules of sequence poly(dT-dG)·poly(dC-dA) (refs 4–7). If Z-DNA occurs naturally then it might have quite different reactivities with molecules such as proteins or carcinogens from right-handed B-DNA. The interconversion of sequences between B and Z forms, under the influence, for example, of DNA binding proteins or chemical modification, may be important in regulating DNA function8,9. So far, little data have been published on the occurrence of potential Z-DNA forming sequences in eukaryotic DNA. Here we report the presence of a sequence of 50 alternating dT and dG residues within one of the introns of a human cardiac muscle actin gene. Also, using a probe specific for poly(dT-dG) sequences, we have found that potential Z-DNA forming sequences are highly repeated in the human genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang, A. H. J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Drew, H., Takano, T., Takano, S., Itakura, K. & Dickerson, R. E. Nature 286, 567–573 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Crowford, J. L. et al. Proc. natn. Acad. Sci. U.S.A. 77, 4016–4020 (1980).

    Article  ADS  Google Scholar 

  5. Leslie, A. G. W., Arnott, S., Chandrasekaran, R. & Ratliff, R. L. J. molec. Biol. 143, 49–72 (1980).

    Article  CAS  Google Scholar 

  6. Vorlickova, M., Kypr, J., Stokrova, S. & Sponar, J. Nucleic Acids Res. 10, 1071–1080 (1982).

    Article  CAS  Google Scholar 

  7. Zimmer, C., Tymen, S., Marck, C. & Guschlbauer, W. Nucleic Acids Res. 10, 1081–1091 (1982).

    Article  CAS  Google Scholar 

  8. Pohl, F. M. & Jovin, T. M. J. molec. Biol. 67, 375–396 (1972).

    Article  CAS  Google Scholar 

  9. Thamann, T. J., Lord, R. C., Wang, A. H. J. & Rich, A. Nucleic Acids Res. 9, 5443–5457 (1981).

    Article  CAS  Google Scholar 

  10. Fritsch, E. F., Lawn, R. M. & Maniatis, T. Cell 19, 959–972 (1980).

    Article  CAS  Google Scholar 

  11. Hamada, H., Petrino, M. G. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. (in the press).

  12. Houck, C. M., Rinehart, F. P. & Schmit, C. W. J. J. molec. Biol. 132, 289–306 (1979).

    Article  CAS  Google Scholar 

  13. Kafatos, F. C., Jones, C. W. & Efstradiadis, A. Nucleic Acids Res. 7, 1541–1552 (1979).

    Article  CAS  Google Scholar 

  14. Misfeld, R., Krystal, M. & Arnheim, N. Nucleic Acids Res. 9, 5931–5947 (1981).

    Article  Google Scholar 

  15. Sage, E. & Leng, M. Proc. natn. Acad. Sci. U.S.A. 77, 4597–4601 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Santella, R. M., Grunberger, D., Weinstein, I. B. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 78, 1451–1455 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Behe, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 78, 1619–1623 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Isono, K. & Yourno, J. Proc. natn. Acad. Sci. U.S.A. 71, 1612–1617 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Klysik, J., Stirdivant, S. M., Larson, J. E., Hart, P. A. & Wells, R. D. Nature 290, 672–677 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Nordheim, A. et al. Nature 294, 417–422 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Hamada, H., Leavitt, J. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. 78, 3634–3638 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, H., Kakunaga, T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298, 396–398 (1982). https://doi.org/10.1038/298396a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298396a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing