Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for base overlap in RNA

Abstract

Duplexed RNA in the solid state conforms to the A-family of structures with 3′-endo sugars and bases arranged outside the helix axis in a spiral staircase arrangement1–4. Recent experiments5–11 suggest that parameters of RNA and DNA helices depend on the sequence of bases in the chain. Furthermore, the average conformation of these flexible molecules may differ between the solution and solid states. The NMR chemical shifts of the base protons in ten oligo-RNA duplexes5,12–18 have been determined. We have now adjusted the helix winding angle, W, between adjacent base pairs (see Fig. 1a) to fit these data. There is extensive overlap of the hydrophobic surfaces of the bases at the proposed angles. These overlaps depend on the arrangement of purines and pyrimidines along the chain and offer a mechanism for recognition of specific sequences by enzymes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Arnott, S., Hukins, D. W. L., Dover, S. D., Fuller, W. & Hodgson, A. R. J. molec. Biol. 81, 107–122 (1973).

    Article  CAS  Google Scholar 

  2. Holbrook, S. R., Sussman, J. L., Warrant, R. W. & Kim, S.-H. J. molec. Biol. 123, 631–660 (1978).

    Article  CAS  Google Scholar 

  3. Seeman, N. C., Rosenberg, J. M., Suddath, F. L., Kim, J. J. P. & Rich, A. J. molec. Biol. 104, 109–144 (1976).

    Article  CAS  Google Scholar 

  4. Rosenberg, J. M., Seeman, N. C., Day, R. O. & Rich, A. J. molec. Biol. 104, 145–167 (1976).

    Article  CAS  Google Scholar 

  5. Bubienko, E., Uniack, M. A. & Borer, P. N. Biochemistry 20, 6987–6994 (1981).

    Article  CAS  Google Scholar 

  6. Rhodes, D. & Klug, A. Nature 292, 378–380 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Wang, A. H. J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Drew, H., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. Nature 286, 567–573 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Conner, B. N., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. Nature 295, 294–299 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Patel, D. J., Canuel, L. L. & Pohl, F. M. Proc. natn. Acad. Sci. U.S.A. 76, 2508–2511 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Arter, D. B., Walker, G. C., Uhlenbeck, O. C. & Schmidt, P. G. Biochem. biophys. Res. Commun. 61, 1089–1094 (1974).

    Article  CAS  Google Scholar 

  13. Borer, P. N., Kan, L. S. & Ts'o, P. O. P. Biochemistry 14, 4847–4863 (1975).

    Article  CAS  Google Scholar 

  14. Hughes, D. W., Bell, R. A., England, T. E. & Neilson, T. Can. J. Chem. 56, 2243–2248 (1978).

    Article  CAS  Google Scholar 

  15. Romaniuk, P. J., Neilson, T., Hughes, D. W. & Bell, R. A. Can. J. Chem. 56, 2249–2252 (1978).

    Article  CAS  Google Scholar 

  16. Romaniuk, P. J., Hughes, D. W., Gregoire, R. J., Neilson, T. & Bell, R. A. J. Am. chem. Soc. 100, 3971–3972 (1978).

    Article  CAS  Google Scholar 

  17. Romaniuk, P. J., Hughes, D. W., Gregoire, R. J., Bell, R. A. & Neilson, T. Biochemistry 18, 5109–5116 (1979).

    Article  CAS  Google Scholar 

  18. Alkema, D., Bell, R. A., Hader, P. A. & Neilson, T. J. Am. chem. Soc. 103, 2866–2868 (1981).

    Article  CAS  Google Scholar 

  19. Woo, S. L. C. et al. Biochemistry 20, 6437–6446 (1981).

    Article  CAS  Google Scholar 

  20. Englander, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A. & Litwin, S. Proc. natn. Acad. Sci. U.S.A. 77, 7222–7226 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Giessner-Prettre, C. & Pullman, B. Biochem. biophys. Res. Commun. 70, 578–581 (1976).

    Article  CAS  Google Scholar 

  22. Mitra, C. K., Sarma, M. H. & Sarma, R. H. Biochemistry 20, 2036–2041 (1981).

    Article  CAS  Google Scholar 

  23. Mitra, C. K., Sarma, M. H. & Sarma, R. H. J. Am. chem. Soc. 103, 6727–6737 (1981).

    Article  CAS  Google Scholar 

  24. Prado, F. R., Giessner-Prettre, C. & Pullman, B. J. theor. Biol. 74, 259–277 (1978).

    Article  CAS  Google Scholar 

  25. Tran-Dinh, S., Guschlbauer, W. & Gueron, M. J. Am. chem. Soc. 94, 7903–7911 (1972).

    Article  Google Scholar 

  26. Prado, F. R. & Giessner-Prettre, C. J. molec. Struct. 76, 81–92 (1981).

    Article  ADS  Google Scholar 

  27. Patel, D. J. & Hilbers, C. W. Biochemistry 14, 2651–2656 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, P., Bubienko, E. & Borer, P. A model for base overlap in RNA. Nature 298, 198–200 (1982). https://doi.org/10.1038/298198a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298198a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing