Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversal of current through calcium channels in dialysed single heart cells

Abstract

Calcium channels contribute to important cellular functions such as impulse conduction, rhythmic activity, muscle contraction, and secretion1 and are a major target for modulation by neurohormones and drugs2,3. Despite their importance, Ca channels are much less well understood than Na and K channels because of several problems reviewed by Hagiwara and Byerly1. First, few preparations allow good control of electrical potential and ionic composition on both sides of the membrane, yet display strong Ca currents. Second, current carried by Ca channels is often obscured by ion movements through other membrane pathways. Third, outward current flow through Ca channels, carried by Ca2+ or any other ion, has been difficult to demonstrate. This is unfortunate because measurements of the potential at which current reverses (Erev) have been crucial in understanding ion permeation and selectivity in other ionic channels (see ref. 4). In molluscan neurones, attempts at recording outward current through the Ca channel have not succeeded, largely because of overlap by nonspecific outward current5–7. In multicellular cardiac muscle preparations, strong depolarizations produce a decaying outward current that Renter and Scholz attributed to K efflux through the Ca channel8. Their interpretation is controversial, however, since the evidence leaves open other explanations for the outward current—for example, Na efflux via Na–Ca exchange9, or K efflux through K-selective channels. To overcome these problems, we studied Ca channels in single isolated heart muscle cells10–12 using a suction pipette method13. We were able to record robust Ca currents with minimal interference from other time-dependent currents while controlling potential and ion composition on both sides of the membrane. Here we present experimental evidence for a genuine reversal of ionic current through Ca channels due to outward movement of K+ ions, in support of the hypothesis of Reuter and Scholz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  2. Tsien, R. W. & Siegelbaum, S. in Physiology of Membrane Disorders (eds Andreoli, T. E., Hoffman, J. F. & Fanestil, D. D.) 517–538 (Plenum, New York 1978).

    Book  Google Scholar 

  3. Reuter, H. A. Rev. Physiol. 41, 413–424 (1979).

    Article  CAS  Google Scholar 

  4. Hille, B. in Membranes: A Series of Advances Vol. 3 (ed. Eisenman, G.) 255–323 (Dekker, New York, 1975).

    Google Scholar 

  5. Kostyuk, P. G. & Krishtal, O. A. J. Physiol., Lond. 270, 545–568 (1977).

    Article  CAS  Google Scholar 

  6. Akaike, N., Lee, K. S. & Brown, A. M. J. gen. Physiol. 71, 509–531 (1978).

    Article  CAS  Google Scholar 

  7. Hagiwara, S. in Molluscan Nerve Cells: From Biophysics to Behavior (eds Koester, J. & Byrne, J. H.) 33–54 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  8. Reuter, H. & Scholz, H. J. Physiol., Lond. 264, 17–47 (1977).

    Article  CAS  Google Scholar 

  9. Mullins, L. Am. J. Physiol. 236, C103–C110 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Lee, K. S., Kao, R. L. & Brown, A. M. Circulation 60, 11–108 (1979).

    Article  Google Scholar 

  11. Isenberg, G. & Klockner, U. Nature 284, 358–360 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Powell, T., Terrar, D. A. & Twist, V. W. J. Physiol., Lond. 319, 82–83P (1981).

    Google Scholar 

  13. Lee, K. S., Weeks, T. A., Kao, R. L., Akaike, N. & Brown, A. M. Nature 278, 268–271 (1979).

    Article  ADS  Google Scholar 

  14. Siegelbaum, S. A. & Tsien, R. W. J. Physiol., Lond. 299, 485–506 (1980).

    Article  CAS  Google Scholar 

  15. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  16. Kenyon, J. L. & Gibbons, W. R. J. gen. Physiol. 73, 139–157 (1979).

    Article  CAS  Google Scholar 

  17. Thompson, S. H. & Aldrich, R. W. in The Cell Surface and Neuronal Function (eds Cotman, C. W., Poste, G. & Nicolson, G. L.) 49–85 (North Holland, New York, 1980).

    Google Scholar 

  18. Lee, K. S., Lee, E. W. & Tsien, R. W. Biophys. J. 33, 143a (1981).

    Google Scholar 

  19. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  20. Horn, R. & Patlak, J. B. Proc. natn. Acad. Sci. U.S.A. 77, 6930–6934 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Hume, J. R. & Giles, W. J. gen. Physiol. (in the press).

  22. Marban, E. & Tsien, R. W. J. Physiol., Lond. (in the press).

  23. Eckert, R., Tillotson, D. & Brehm, P. Fedn Proc. 40 (in the press).

  24. Marban, E. & Tsien, R. W. Biophys. J. 33, 143a (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Tsein, R. Reversal of current through calcium channels in dialysed single heart cells. Nature 297, 498–501 (1982). https://doi.org/10.1038/297498a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297498a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing