Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term potentiation of the perforant path in vivo is associated with increased glutamate release

Abstract

Long-term potentiation (LTP) of synaptic transmission following brief trains of high-frequency stimulation in hippocampal pathways has attracted attention as a possible physiological correlate of memory. The mechanism of LTP is little understood, and what evidence there is suggests that both pre- and postsynaptic mechanisms are involved1–7. Previous findings that Ca2+ is required for LTP8,9, and that LTP is accompanied by a prolonged increased in Ca2+ uptake10, suggest that an increase in impulse-dependent release of transmitter, a process critically dependent on presynaptic Ca2+ levels11,12, may be an important component of this form of synaptic plasticity. A recent report13 that release of previously accumulated 3H-D-aspartate is increased following tetanic stimulation of afferent fibres to CA1 pyramidal cells in hippocampal slices is also consistent with a presynaptic mechanism. However, there has been no direct evidence relating LTP to an increased stimulus-dependent release of transmitter. We have now investigated whether LTP in the perf orant path (PP) of the rat is associated with a change in the release of neurotransmitter. A modification of the push-pull cannula technique has enabled us to infuse 3H-glutamine and measure the subsequent release of newly synthesized 3H-glutamate, and at the same time to monitor the field potentials evoked in the dentate gyrus by stimulation of the PP. We have found a prolonged increase in the release of glutamate, the probable transmitter of the PP14,15, following the induction of LTP in this pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lømo, T. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W. & Wigström, H. J. Physiol., Lond. 302, 463–482 (1980).

    Article  CAS  Google Scholar 

  3. Dunwiddie, T. & Lynch, G. J. Physiol., Lond. 276, 353–367 (1978).

    Article  CAS  Google Scholar 

  4. van Harreveld, A. & Fifková, E. Expl Neurol. 49, 736–749 (1975).

    Article  CAS  Google Scholar 

  5. Baudry, M., Bundman, M. C., Smith, E. K. & Lynch, G. S. Science 212, 937–938 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Browning, M., Bennett, W. F., Kelly, P. & Lynch, G. Brain Res. 218, 255–266 (1981).

    Article  CAS  Google Scholar 

  7. McNaughton, B. L., Douglas, R. M. & Goddard, G. V. Brain Res. 157, 277–293 (1978).

    Article  CAS  Google Scholar 

  8. Dunwiddie, T., Madison, D. & Lynch, G. Brain Res. 150, 413–417.

  9. Wigström, H., Swann, J. W. & Andersen, P. Acta physiol. scand. 105, 126–128 (1979).

    Article  Google Scholar 

  10. Baimbridge, K. G. & Miller, J. J. Brain Res. 221, 299–305 (1981).

    Article  CAS  Google Scholar 

  11. Dodge, F. A. & Rahamimoff, R. J. Physiol., Lond. 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  12. Katz, B. & Miledi, R. J. Physiol., Lond. 216, 503–512 (1971).

    Article  CAS  Google Scholar 

  13. Skrede, K. K. & Malthe-Sørenssen, D. Brain Res. 208, 436–441 (1981).

    Article  CAS  Google Scholar 

  14. Storm-Mathisen, J. Adv. Biochem. Psychopharmac. 27, 43–53 (1981).

    CAS  Google Scholar 

  15. Nadler, J. V. & Smith, E. M. Neurosci. Lett. 25, 275–280 (1981).

    Article  CAS  Google Scholar 

  16. Lømo, T. Expl Brain Res. 12, 18–45 (1971).

    Google Scholar 

  17. Bradford, H. & Ward, H. K. Brain Res. 110, 115–125 (1976).

    Article  CAS  Google Scholar 

  18. Bradford, H., Ward, H. K. & Thomas, A. J. J. Neurochem. 30, 1453–1459 (1978).

    Article  CAS  Google Scholar 

  19. Hamberger, A., Chiang, G. H., Sandoval, M. E. & Cotman, C. W. Brain Res. 168, 513–530 (1979).

    Article  CAS  Google Scholar 

  20. Reubi, J.-C., Van der Berg, C. & Cuénod, M. Neurosci. Lett. 10, 171–174 (1978).

    Article  CAS  Google Scholar 

  21. Dolphin, A. C. Brain Res. (in the press).

  22. Reubi, J.-C. Neuroscience 5, 2145–2150 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolphin, A., Errington, M. & Bliss, T. Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature 297, 496–497 (1982). https://doi.org/10.1038/297496a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297496a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing