Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinetics of induction and molecular size of mRNAs encoding human interleukin-2 and γ-interferon

Abstract

T-cell growth factor (TCGF), or interleukin-2 (IL-2), and immune or γ-interferon (IFN-γ) are lymphokines possessing powerful immunoregulatory properties. IL-2 is essential for the in vitro proliferation and maturation of certain classes of T lymphocyte1,2, particularly cytotoxic3,4 and helper5 T cells, and also activates natural killer cells6. IFN-γ is considerably more active than IFN-α and -β as activator of natural killer cells and as antiproliferative agent, relative to its antiviral activity7–11. As a step towards understanding the regulation of expression of these proteins, we report here the induction of mRNA species encoding IL-2 and IFN-γ in mitogen-stimulated normal human lymphocytes and their expression in Xenopus laevis oocytes. On microinjection, distinct species of mRNA sedimenting at 10–10.5S and 13–13.5S direct the synthesis and secretion of active IL-2 and IFN-γ respectively. A second species of IL-2 mRNA is consistently revealed, sedimenting at 13–13.5S and comprising about 20% of the total IL-2 mRNA activity. During induction, an initial concomitant rise in IL-2 and IFN-γ mRNA activities is followed promptly by a concomitant decline in the rate of their accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morgan, D. A., Ruscetti, F. W. & Gallo, R. C. Science 193, 1007–1008 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Gillis, S. & Smith, K. A. Nature 268, 154–155 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Gillis, S., Baker, P. B., Ruscetti, F. W. & Smith, K. A. J. exp. Med. 148, 1093–1098 (1978).

    Article  CAS  Google Scholar 

  4. Zarling, J. M. & Bach, F. H. Nature 280, 685–687 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Tees, R. & Schreier, M. H. Nature 283, 780–782 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Henney, C. S., Kuribayashi, K., Kern, D. E. & Gillis, S. Nature 291, 335–338 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Claeys, H., van Damme, J., de Ley, M., Vermylen, C. & Billiau, A. Br. J. Haemat. 50, 85–94 (1982).

    Article  CAS  Google Scholar 

  8. Crane, J. L. Jr, Glasgow, L. A., Kern, E. R. & Younger, J. S. J. natn. Cancer Inst. 61, 871–874 (1978).

    Google Scholar 

  9. Sonnenfeld, G., Mandel, A. D. & Merigan, T. C. Cell. Immun. 40, 285–293 (1978).

    Article  CAS  Google Scholar 

  10. Blalock, J. E., Georgiades, J. A., Langford, M. P. & Johnson, H. M. Cell. Immun. 49, 390–394 (1980).

    Article  CAS  Google Scholar 

  11. Rubin, B. Y. & Gupta, S. L. Proc. natn. Acad. Sci. U.S.A. 77, 5928–5932 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Taniguchi, T., Pang, R. H. L., Yip, Y. K., Henriksen, D. & Vilcek, J. Proc. natn. Acad. Sci. U.S.A. 78, 3469–3472 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Wallace, D. M., Hitchcock, M. J. M., Reber, S. B. & Berger, S. L. Biochem. biophys. Res. Commun. 100, 865–871 (1981).

    Article  CAS  Google Scholar 

  14. Gillis, S. & Watson, J. J. exp. Med. 152, 1709–1719 (1980).

    Article  CAS  Google Scholar 

  15. Ford, R. J. et al. Nature 294, 261–263 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Paucker, K. & Boxaca, M. Bact. Rev. 31, 145–184 (1967).

    CAS  PubMed  Google Scholar 

  17. Gullberg, M., Ivars, F., Coutinho, A. & Larsson, E. J. Immun. 127, 407–411 (1981).

    CAS  PubMed  Google Scholar 

  18. Weissenbach, J. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7152–7156 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Sehgal, P. B. & Sagar, A. D. Nature 288, 95–97 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Spirin, A. S. Biokhimiya 26, 454–463 (1961).

    CAS  Google Scholar 

  21. Mier, J. W. & Gallo, R. C. Proc. natn. Acad. Sci. U.S.A. 77, 6134–6138 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Robb, R. J. & Smith, K. A. Fedn Proc. 40, 1163 (1981).

    Google Scholar 

  23. Yip, Y. K. et al. Science 215, 411–413 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  25. Bantle, J. A., Maxwell, I. H. & Hahn, W. E. Analyt. Biochem. 72, 413–427 (1976).

    Article  CAS  Google Scholar 

  26. Soreq, H. and Miskin, R. FEBS Lett. 128, 305–310 (1981).

    Article  CAS  Google Scholar 

  27. Di Segni, G., Rosen, H. & Kaempfer, R. Biochemistry 18, 2847–2854 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efrat, S., Pilo, S. & Kaempfer, R. Kinetics of induction and molecular size of mRNAs encoding human interleukin-2 and γ-interferon. Nature 297, 236–239 (1982). https://doi.org/10.1038/297236a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297236a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing