Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Old and blue white-dwarf stars as a detectable source of microlensing events

Abstract

The analysis1 of gravitational microlensing events of stars2,3 in the Large Magellanic Cloud places the masses of the lensing objects in the range 0.3–0.8 solar masses, suggesting that they might be old white-dwarf stars. Such objects represent the last stage of stellar evolution: they are the cooling cores of stars that have lost their atmospheres after nuclear fusion has ceased in their centres. If white dwarfs exist in abundance in the halo of our Galaxy, this would have profound implications for our understanding of the early generations of stars in the Universe4,5,6. Previous attempts to constrain theoretically6,7,8 the contribution of white dwarfs to microlensing indicate that they can account for only a small fraction of the events. But these estimates relied on models of white-dwarf cooling that are inadequate for describing the properties of the oldest such objects. Here I present cooling models appropriate for very old white dwarfs. I find, using these models, that the widely held notion that old white dwarfs are red applies only to those with a helium atmosphere; old white dwarfs with hydrogen atmospheres, which could be a considerable fraction of the total population, will appear rather blue, with colours similar to those of the faint blue sources in the Hubble Deep Field. Observational searches for the population of microlensing objects should therefore look for faint blue objects, rather than faint red ones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of the photosphere in white dwarfs.
Figure 2: Calculated cooling curves.
Figure 3: Stellar objects in the Hubble Deep Field.

Similar content being viewed by others

References

  1. Alcock, C. et al. The MACHO project Large Magellanic Cloud microlensing results from the first two years and the nature of the Galactic dark halo. Astrophys. J. 486, 697–726 (1997).

    Article  ADS  Google Scholar 

  2. Alcock, C. et al. Possible gravitational microlensing of a star in the Large Magellanic Cloud. Nature 365, 621–623 (1993).

    Article  ADS  Google Scholar 

  3. Aubourg, E. et al. Evidence for gravitational microlensing by dark objects in the galactic halo. Nature 365, 623–625 (1993).

    Article  ADS  Google Scholar 

  4. Larson, R. B. Dark matter—dead stars? Comments Astrophys. 11, 273–282 (1987).

    ADS  CAS  Google Scholar 

  5. Charlot, S. & Silk, J. Signatures of white dwarf galaxy halos. Astrophys. J. 445, 124–132 (1995).

    Article  ADS  Google Scholar 

  6. Adams, F. & Laughlin, G. Implications of white dwarf galactic halos. Astrophys. J. 468, 586–597 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Chabrier, G., Segretain, L. & Mera, D. Contribution of brown dwarfs and white dwarfs to recent microlensing observations and the halo mass budget. Astrophys. J. 468 L21–L24 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Graff, D. S., Laughlin, G. & Freese, K. MACHOs, white dwarfs and the age of the universe. Astrophys. J. 499, 7–19 (1998).

    Article  ADS  CAS  Google Scholar 

  9. D'Antona, F. & Mazzitelli, I. Cooling of white dwarfs. Annu. Rev. Astron. Astrophys. 28, 139–181 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Bergeron, P., Saumon, D. & Wesemael, F. New model atmospheres for very cool white dwarfs with mixed H/He and pure He compositions. Astrophys. J. 443, 764–779 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Bergeron, P., Ruiz, M. T. & Leggett, S. K. The chemical evolution of cool white dwarfs and the age of the local galactic disk. Astrophys. J. Suppl. 108, 339–387 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Hansen, B. M. S. & Phinney, E. S. Stellar forensics I: cooling curves. Mon. Not. R. Astron. Soc. 294, 557–568 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Mihalas, D. Stellar Atmospheres (Freeman, San Francisco, (1970)).

  14. Saumon, D., Bergeron, P., Lunine, J. I., Hubbard, W. B. & Burrows, A. Cool zero-metallicity stellar atmospheres. Astrophys. J. 424, 333–344 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Wood, M. A. in White Dwarfs (eds Koester, D. & Werner, K.) 41 (Springer, Heidelberg, (1995)).

  16. Salaris, M. et al. The cooling of CO white dwarfs: influence of the internal chemical distribution. Astrophys. J. 486, 413–419 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Liebert, J., Dahn, C. D. & Monet, D. G. The luminosity function of white dwarfs. Astrophys. J. 332, 891–909 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Flynn, C., Gould, A. & Bahcall, J. N. Hubble Deep Field constraint on baryonic dark matter. Astrophys. J. 466, L55–L58 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Elson, R. A. W., Santiago, B. X. & Gilmore, G. F. Halo stars, starbursts, and distant globular clusters: A survey of unresolved objects in the Hubble Deep Field. New Astron. 1, 1–16 (1996).

    Article  ADS  Google Scholar 

  20. Mendez, R. A., Minniti, D., de Marchi, G., Baker, A. & Couch, W. J. Starcounts in the Hubble Deep Field: constraining galactic structure models. Mon. Not. R. Astron. Soc. 283, 666–672 (1996).

    Article  ADS  Google Scholar 

  21. Oswalt, T. D., Smith, J. A., Wood, M. A. & Hintzen, P. Alower limit of 9.5 Gyr on the age of the galactic disk from the oldest white dwarf stars. Nature 382, 692–694 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Clemens, J. C. The pulsation properties of the DA white dwarf variables. Baltic Astron. 2, 407–434 (1993).

    ADS  Google Scholar 

  23. Iben, I. A. & MacDonald, J. The effects of diffusion due to gravity and due to composition gradients on the rate of hydrogen burning in a cooling degenerate dwarf. I. The case of a thick helium buffer layer. Astrophys. J. 296, 540–553 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Paczynski, B. Evolution of single stars. VI. Model nuclei of planetary nebulae. Acta Astron. 21, 417–435 (1971).

    ADS  Google Scholar 

  25. Richer, H. B. et al. White dwarfs in globular clusters: Hubble Space Telescope observations of M4. Astrophys. J. 484, 741–760 (1997).

    Article  ADS  Google Scholar 

  26. Bahcall, J. N., Schmidt, M. & Soneira, R. M. The galactic spheroid. Astrophys. J. 265, 730–747 (1983).

    Article  ADS  Google Scholar 

  27. Chaboyer, B., DeMarque, P., Kernan, P. J. & Krauss, L. M. The age of globular clusters in the light of Hipparcos: resolving the age problem? Astrophys. J. 494, 96–110 (1998).

    Article  ADS  Google Scholar 

  28. Holtzman, J. A. et al. The photometric performance & calibration of WFPC2. Publ. Astron. Soc. Pacif. 107, 1065–1093 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the Aspen Center for Physics for hospitality, and M. Wood, G. Chabrier, E. Garcia-Berro and M. Hernanz for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad M. S. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, B. Old and blue white-dwarf stars as a detectable source of microlensing events. Nature 394, 860–862 (1998). https://doi.org/10.1038/29710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29710

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing