Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Opiate receptor subclasses differ in their conformational requirements

Abstract

Pharmacological and biochemical studies of classical opiates and opioid peptide analogues have revealed the existence of several subclasses of opiate receptors1–5, among which the μ-, δ-, κ- and σ-receptors have been most widely discussed. The physiological roles of the different receptor classes and their structural characteristics remain to be elucidated. Recently, a cyclic analogue of enkephalin, H-Tyr-cyclo[-Nγ-D-A2bu-Gly-Phe-Leu-] (Fig. 1, compound I; A2bu represents α,γ-diamino-butyric acid), showing high potency in μ-receptor-selective bio- and binding assays has been described6. To assess the effect of the conformational constraint introduced by cyclization on opiate receptor selectivity, we have compared the cyclic compound I with its corresponding open-chain analogue, [D-Abu2,Leu5]enkephalinamide (Fig. 1, compound II; Abu represents α-aminobutyric acid), in bioassays based on inhibition of electrically evoked contractions of the guinea pig ileum and the mouse vas deferens, and in binding assays using μ-and σ-receptor-selective radiolabels. The differences in potency of the two compounds observed in the four assay systems suggest that the various opiate receptor subclasses have different preferences in terms of conformational properties of ‘complementary’ ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E. & Gilbert, P. E. J. Pharmac. exp. Ther. 197, 517–532 (1976).

    CAS  Google Scholar 

  2. Gilbert, P. E. & Martin, W. R. J. Pharmac. exp. Ther. 198, 66–82 (1976).

    CAS  Google Scholar 

  3. Lord, J. A., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Chang, K.-J. & Cuatrecasas, P. J. biol. Chem. 254, 2610–2618 (1979).

    CAS  PubMed  Google Scholar 

  5. Wolozin, B. L. & Pasternak, G. W. Proc. natn. Acad. Sci. U.S.A. 78, 6181–6185 (1981).

    Article  ADS  CAS  Google Scholar 

  6. DiMaio, J. & Schiller, P. W. Proc. natn. Acad. Sci. U.S.A. 77, 7162–7166 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Hughes, J. et al. Nature 258, 577–579 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Roemer, D. et al. Nature 268, 547–549 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Handa, B. K. et al. Eur. J. Pharmac. 70, 531–540 (1981).

    Article  CAS  Google Scholar 

  10. Pert, C. B. & Snyder, S. H. Molec. Pharmac. 10, 868–879 (1974).

    CAS  Google Scholar 

  11. Bowen, W. D., Gentleman, S., Herkenham, M. & Pert, C. Proc. natn. Acad. Sci. U.S.A. 78, 4818–4822 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Martin, W. R. in The Bases of Addiction (ed. Fishman, J.) 395–410 (Dahlem Konferenzen, Berlin, 1978).

    Google Scholar 

  13. Veber, D. F. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2636–2640 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Meyers, C. A. et al. Proc. natn. Acad. Sci. U.S.A. 77, 577–579 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Chipens, G. I. et al. Int. J. Peptide Protein Res. 18, 302–311 (1981).

    Article  CAS  Google Scholar 

  16. Krogsgaard-Larsen, P., Johnston, G. A. R., Lodge, D. & Curtis, D. R. Nature 268, 53–55 (1977).

    Article  ADS  CAS  Google Scholar 

  17. DiMaio, J., Nguyen, T. M.-D., Lemieux, C. & Schiller, P. W. J. med. Chem. (submitted).

  18. Schiller, P. W., Eggimann, B., DiMaio, J., Lemieux, C. & Nguyen, T. M.-D. Biochem. biophys. Res. Commun. 101, 337–343 (1981).

    Article  CAS  Google Scholar 

  19. Paton, W. D. M. Br. J. Pharmac. 12, 119–127 (1957).

    CAS  Google Scholar 

  20. Schiller, P. W., Lipton, A., Horrobin, D. F. & Bodanszky, M. Biochem. biophys. Res. Commun. 85, 1332–1338 (1978).

    Article  CAS  Google Scholar 

  21. Hughes, J., Kosterlitz, H. W. & Leslie, F. M. Br. J. Pharmac. 55, 541–546 (1975).

    Article  Google Scholar 

  22. Waterfield, A. A., Leslie, F. M., Lord, J. A. H., Ling, N. & Kosterlitz, H. W. Eur. J. Pharmac. 58, 11–18 (1979).

    Article  CAS  Google Scholar 

  23. Kosterlitz, H. W. & Watt, A. J. Br. J. Pharmac. 33, 266–276 (1968).

    CAS  Google Scholar 

  24. Cheng, Y. C. & Prusoff, W. H. Biochem. Pharmac. 22, 3099–3108 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, P., DiMaio, J. Opiate receptor subclasses differ in their conformational requirements. Nature 297, 74–76 (1982). https://doi.org/10.1038/297074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297074a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing