Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum

Abstract

A coupled atmosphere–ocean–sea-ice model is used to investigate the climate of the Last Glacial Maximum (21,000 years ago) and the relative climate-forcing effects of atmosphere CO2, the Earth's orbital parameters and ice-sheet albedo. Tropical temperatures are found to be 2.2 °C less than today's—slightly colder than indicated by the CLIMAP palaeoclimate reconstruction. This result is consistent with a low to medium climate sensitivity to radiative perturbations. Temperatures are colder still in the northern North Atlantic region, owing to a weakening and shallowing of the thermohaline circulation. A sensitivity analysis suggests that changes in ocean circulation since the Last Glacial Maximum have not contributed directly to the global-mean temperature change since that time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: River drainage basins.
Figure 2: Present-day and LGM conveyor and poleward heat transport.
Figure 3: Difference fields between the LGM and present-day experiments.
Figure 4: Anomaly maps showing the difference between model and CLIMAP1,2 SST changes between the LGM and the present day.
Figure 5: Zonally averaged ocean potential temperature difference fields between the LGM and present-day experiments.
Figure 6: As in Fig. 2 but for the three other experiments with different initial present-day conveyor strengths in the North Atlantic.

Similar content being viewed by others

References

  1. CLIMAP Project Members The surface of the ice-age earth. Science 191, 1131–1137 (1976).

    Article  ADS  Google Scholar 

  2. CLIMAP Project Members Seasonal reconstructions of the earth's surface at the glacial maximum. ( Map Chart Ser. MC-36, Geol. Soc. Am., Boulder, C, (1981).

  3. Sikes, E. L. & Keigwin, L. Equatorial Atlantic sea surface temperature for the last 30 kyr: A comparison of U37k′, δ18O and foraminiferal assemblage temperature estimates. Paleoceanography 91, 31–45 (1994).

    Article  ADS  Google Scholar 

  4. Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Lyle, M. W., Prahl, F. G. & Sparrow, M. A. Upwelling and productivity changes inferred from a temperature record in the central equatorial Pacific. Nature 355, 812–815 (1992).

    Article  ADS  Google Scholar 

  6. Rostek, F. et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364, 319–321 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Guilderson, T. P., Fairbanks, R. G. & Rubenstone, J. L. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263, 663–665 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Beck, J. W. et al. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature 385, 705–707 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Thompson, L. G. et al. Late glacial stage and Holocene tropical ice core records from Huascáran, Peru. Science 269, 46–50 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Stute, M. et al. Cooling of tropical Brazil (5 °C) during the last glacial maximum. Science 269, 379–383 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Curry, W. B. & Oppo, D. W. Synchronous high-frequency oscillations in tropical sea surface temperatures and North Atlantic deep water production during the last glacial cycles. Paleoceanography 12, 1–14 (1997).

    Article  ADS  Google Scholar 

  12. Lautenschlager, M., Mikolajewicz, U., Maier-Reimer, E. & Heinze, C. Application of ocean models for the interpretation of atmospheric general circulation model experiments on the climate of the Last Glacial maximum. Paleoceanography 7, 769–782 (1992).

    Article  ADS  Google Scholar 

  13. Fichefet, T., Hovine, S. & Duplessy, J.-C. Amodel study of the Atlantic thermohaline circulation during the last glacial maximum. Nature 372, 252–255 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Winguth, A. M. E. et al. On the Sensitivity of an Ocean General Circulation Model to Glacial Boundary Conditions (Rep. No. 203, Max-Planck-Institut für Meteorologie, Hamburg, (1996)).

  15. Manabe, S. & Broccoli, A. J. The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res. 90, 2167–2190 (1985).

    Article  ADS  Google Scholar 

  16. Hansen, J. et al. in Climate Processes and Climate Sensitivity 130–163 (Geophys. Monogr. 29, Am. Geophys. Union, Washington DC, (1984)).

  17. Lautenschlager, M. & Herterich, K. Atmospheric response to ice age conditions: climatology near the earth's surface. J. Geophys. Res. 95, 22547–22557 (1990).

    Article  ADS  Google Scholar 

  18. Kutzbach, J. E. & Guetter, P. J. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci. 43, 1726–1759 (1986).

    Article  ADS  Google Scholar 

  19. Crowley, T. J. & Baum, S. K. Effect of vegetation on an ice-age climate model simulation. J. Geophys. Res. 102, 16463–16480 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Webb, R. S. et al. Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385, 695–699 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Bush, A. B. G. & Philander, S. G. H. The role of ocean-atmosphere interactions in tropical cooling during the Last Glacial Maximum. Science 279, 1341–1344 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356 (1998).

    Article  ADS  Google Scholar 

  23. Fanning, A. F. & Weaver, A. J. An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model. J. Geophys. Res. 101, 15111–15128 (1996).

    Article  ADS  Google Scholar 

  24. daSilva, A. M., Young, C. C. & Levitus, S. Atlas of Surface Marine Data 1994 Vol. 3(NOAA, Washingotn DC, (1994)).

  25. Fanning, A. F. & Weaver, A. J. Temporal geographical meltwater influences on the North Atlantic Conveyor: Implications for the Younger Dryas. Paleoceanography 12, 307–320 (1997).

    Article  ADS  Google Scholar 

  26. Semtner, A. J. Amodel for the thermodynamic growth of sea ice in numerical investigations of climate. Phys. Oceanogr. 6, 379–389 (1976).

    Article  ADS  Google Scholar 

  27. Thompson, S. J. & Warren, S. G. Parameterization of outgoing infrared radiation derived from detailed radiative calculations. J. Atmos. Sci. 39, 2667–2680 (1982).

    Article  ADS  Google Scholar 

  28. Graves, C. E., Lee, W. H. & North, G. R. New parameterizations and sensitivities for simple climate models. J. Geophys. Res. 98, 5025–5036 (1993).

    Article  ADS  Google Scholar 

  29. Peltier, W. R. Ice age paleotopography. Science 265, 195–201 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Pacanowski, R. C. Momz user's guide and reference manual(GFDL Ocean Group Tech. Rep. No. 3, GFDL/NOAA, Princeton, NJ, (1995)).

  31. Weaver, A. J. & Hughes, T. M. C. On the incompatibility of ocean and atmosphere models and the need for flux adjustments. Clim. Dyn. 12, 141–170 (1996).

    Article  Google Scholar 

  32. Berger, A. L. Long term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  33. Ramanathan, V. et al. Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys. 25, 1411–1482 (1987).

    Article  ADS  Google Scholar 

  34. Ikehara, M. et al. Alkenone sea surface temperature in the Southern Ocean for the last two deglaciations. Geophys. Res. Lett. 24, 679–682 (1997).

    Article  ADS  CAS  Google Scholar 

  35. Schneider, R. R., Müller, P. J. & Ruhland, G. Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures. Paleoceanography 10, 197–219 (1995).

    Article  ADS  Google Scholar 

  36. Chapman, M. R. et al. Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over last 28 kyr. Paleoceanograhy 11, 343–357 (1996).

    Article  ADS  Google Scholar 

  37. Broccoli, A. J. & Manabe, S. The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Clim. Dyn. 1, 87–99 (1987).

    Article  Google Scholar 

  38. Hyde, W. T. et al. Comparison of GCM and energy balance model simulations of seasonal temperature changes over the past 18,000 years. J. Clim. 2, 864–887 (1989).

    Article  ADS  Google Scholar 

  39. Denton, G. H. & Hughes, T. J. (eds) The Last Great Ice Sheets (Wiley, New York, (1981)).

  40. Cooke, D. W. & Hays, J. D. in Antarctic Geoscience (eds Craddock, C. et al.) 1017–1025 (Univ. Wisconsin Press, Madison, (1982)).

  41. Hebbein, D. et al. Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370, 357–359 (1994).

    Article  ADS  Google Scholar 

  42. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–148 (1995).

    Article  ADS  CAS  Google Scholar 

  43. Tziperman, E. Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature 386, 592–595 (1997).

    Article  ADS  CAS  Google Scholar 

  44. Maier-Reimer, E. & Mikolajewicz, U. in Oceanography (eds Ayala-Castanares, A. et al.) 87–99 (UNAM Press, Mexico, (1989)).

  45. Schmitz, W. J. J On the interbasin-scale thermohaline circulation. Rev. Geophys. 33, 151–173 (1995).

    Article  ADS  Google Scholar 

  46. Petit, J. R., Briat, M. & Royer, A. Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293, 391–394 (1981).

    Article  ADS  CAS  Google Scholar 

  47. Fairbanks, R. G. A17,000-year glacial-eustatic sea level record: Influence of glacial meltwater rates on Younger Dryas event and deep ocean circulation. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  48. McIntyre, A. et al. in Investigations of Late Quaternary Paleoceanography and Paleoclimatology (eds Cline, R. M. & Hays, J. D.) 43–76 (Geol. Soc. Am., Boulder, CO, (1976)).

  49. Boyle, E. & Keigwin, L. D. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  50. Kattenberg, A. et al. in Climate Change 1995; the Science of Climate Change (eds Houghton, J. T. et al.) 285–357 (Cambridge Univ. Press, (1996)).

Download references

Acknowledgements

All numerical computations were conducted locally on a suite of IBM RS6000s including two SP2s. We thank S. Rahmstorf and T. Stocker for comments on an earlier version of this manuscript, and A. Broccoli for a review which significantly improved the manuscript. This work was supported by NSERC, CSHD, CICS, NOAA and Steacie operating grants, as well as an IBM SUR grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Weaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, A., Eby, M., Fanning, A. et al. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394, 847–853 (1998). https://doi.org/10.1038/29695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29695

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing