Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibitors of dynein activity block intracellular transport in erythrophores

Abstract

Erythrophores, cells capable of translocating pigment granules along a radially arrayed cytoskeletal framework, provide an excellent model system for studying intracellular particle transport. Numerous examples of intracellular motility are based on microtubules1 and all available evidence indicates that organized pigment granule transport in erythrophores depends on these structures2. The best studied microtubule-based motility system is the flagellum. As it relies on a dynein–microtubule interaction to generate motive force3, we have investigated the effects of dynein ATPase inhibitors on pigment granule transport. Vanadate is a potent inhibitor of dynein ATPase activity in vitro4–6 and has been shown to inhibit microtubule-based motility in cilia4, flagella4 and the mitotic spindle7. Recently, another dynein inhibitor, erythro-9-3-(2-hydroxynonyl)adenine (EHNA), has been described8. We report here that both microinjected vanadate and exogenously applied EHNA block saltatory movement of pigment granules in isolated squirrelfish erythrophores. The vanadate and EHNA sensitivities of directed pigment motion suggest that a dynein-like molecule may be an essential component of the erythrophore intracellular motility system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hyams, J. S. & Stebbings, H. in Microtubules (ed. Hyams, J. S.) (Academic, New York, 1979).

    Google Scholar 

  2. Schliwa, M. in International Cell Biology, 1980-1981 (ed. Schweiger, H. G.) 275–285 (Springer, Berlin, 1981).

    Google Scholar 

  3. Satir, P. et al. Cell Motility 1, 303–327 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Gibbons, I. R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2220–2224 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Kobayashi, T. et al. Biochem. biophys. Res. Commun. 81, 1313–1318 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Shimizu, T. Biochemistry 20, 4347–4354 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Cande, W. Z. & Wolniak, S. M. J. Cell Biol. 79, 573–580 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Bouchard, P., Penningroth, S. M., Cheung, A., Gagnon, C. & Bardin, C. W. Proc. natn. Acad. Sci. U.S.A. 78, 1033–1036 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Byers, H. R. & Porter, K. R. J. Cell Biol. 75, 541–558 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Luby, K. J. & Porter, K. R. Cell 21, 13–23 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Graessmann, M. & Graessmann, A. Proc. natn. Acad. Sci. U.S.A. 73, 366–370 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Simons, T. J. B. Nature 281, 337–338 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Geschwind, I. I. et al. J. Cell Biol. 74, 928–939 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Beckerle, M. C. & Porter, K. R. J. Cell Biol. 91, 302a (1981).

    Google Scholar 

  15. Cantley, L. C. et al. J. biol. Chem. 252, 7421–7423 (1977).

    CAS  PubMed  Google Scholar 

  16. Parker, G. H. Animal Colour Changes and their Neurohumours, 122–134 (Cambridge University Press, 1948).

    Google Scholar 

  17. Goodno, C. C. Proc. natn. Acad. Sci. U.S.A. 76, 2620–2624 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Hansen, O. Biochim. biophys. Acta 568, 265–269 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen, P. L. & Anner, B. M. Biochim. biophys. Acta 555, 485–492 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Pike, M. C., Kredich, N. M. & Snyderman, R. Proc. natn. Acad. Sci. U.S.A. 75, 3928–3932 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Luby, K. J. EUT. J. Cell Biol 22, 352a (1980).

    Google Scholar 

  22. Gagnon, C. Nature 291, 515–516 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Pratt, M. M., Otter, T. & Salmon, E. D. J. Cell Biol. 86, 738–745 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Mooseker, M. S. & Tilney, L. G. J. Cell Biol. 56, 13–26 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baccetti, A. et al. J. Cell Biol. 88, 102–107 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Cande, W. Z. J. Cell Biol. 91, 320a (1981).

    Google Scholar 

  27. Forman, D. S. J. Cell Biol. 91, 414a (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckerle, M., Porter, K. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature 295, 701–703 (1982). https://doi.org/10.1038/295701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295701a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing