Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatotopic maps are disorganized in adult rodents treated neonatally with capsaicin

Abstract

The somatosensory system is characterized at each stage of the projection pathways by the presence of maps formed by an orderly arrangement of cells and of the incoming fibres. Each cell responds to a definite area of skin, its receptive field (RF). If cell locations and their RFs are plotted side by side, they make up a continuous map of the body surface. Given the stability and repeatability of these maps, it was of interest to find that lesions which destroyed the input to one part of the map of the spinal cord in adults were followed by a readjustment of the RFs of cells which had lost their normal input1. It was more surprising to discover in adult cats and rats that peripheral nerve lesions which do not produce an anatomical destruction of spinal cord afferents were followed by the appearance of novel RFs in cells deprived of their normal physiological input2,3. Capsaicin given to neonatal mice or rats destroys unmyelinated afferents. We report here that this is followed by an expansion of the normal receptive fields supplied by myelinated afferents2,3. Our results suggest that unmyelinated fibres may be involved in controlling the connectivity of myelinated afferents with first central cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wall, P. D. Phil. Trans. R. Soc. B278, 361–372 (1977).

    Article  CAS  Google Scholar 

  2. Devor, M. & Wall, P. D. J. comp. Neurol. 199, 277–291 (1981).

    Article  CAS  Google Scholar 

  3. Devor, M. & Wall, P. D. J. Neurosci. 1, 679–684 (1981).

    Article  CAS  Google Scholar 

  4. Devor, M. & Claman, D. Brain Res. 190, 17–28 (1980).

    Article  CAS  Google Scholar 

  5. Barbut, D., Polak, J. M. & Wall, P. D. Brain Res. 205, 289–298 (1981).

    Article  CAS  Google Scholar 

  6. Csillik, B. & Knyihar, E. Prog. Neurobiol. 10, 203–230 (1978).

    Article  CAS  Google Scholar 

  7. Jancso, G., Kiraly, E. & Jancso-Gabor, A. Nature 270, 741–743 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Lawson, S. N. & Nickels, S. M. J. Physiol., Lond. 303, 12P (1980).

    Google Scholar 

  9. Scadding, J. W. J. Anat. 131, 473–484 (1980).

    Google Scholar 

  10. Nagy, J. I., Hunt, S. P., Iversen, L. L. & Emson, P. C. Neuroscience 6, 1923–1934 (1981).

    Article  CAS  Google Scholar 

  11. Jancso, G. & Kiraly, E. J. comp. Neurol. 190, 781–792 (1980).

    Article  CAS  Google Scholar 

  12. Nagy, J. I. et al. Brain Res. 186, 435–444 (1980).

    Article  CAS  Google Scholar 

  13. Gamse, R., Holzer, P. & Lembeck, F. Br. J. Pharmac. 68, 207–213 (1980).

    Article  CAS  Google Scholar 

  14. Helke, C. H., Dimico, J. A., Jacobowitz, D. M. & Kopin, I. J. Brain Res. 222, 428–431 (1981).

    Article  CAS  Google Scholar 

  15. Gamse, R., Leeman, S. E., Holzer, P. & Lembeck, F. N. S. Archs Pharmac. 317, 140–148 (1981).

    Article  CAS  Google Scholar 

  16. Jancso, G. & Jancso-Gabor, A. N. S. Archs Pharmac. 311, 285–288 (1980).

    Article  CAS  Google Scholar 

  17. Gibson, S. J., Polak, J. M., Wall, P. D. & Bloom, S. R. J. comp. Neurol. 201, 65–79 (1981).

    Article  CAS  Google Scholar 

  18. Woolsey, T. A. & Van der Loos, H. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  19. Van der Loos, H. & Woolsey, T. A. Science 179, 395–398 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Van der Loos, H. & Dörfl, J. Neurosci. Lett. 7, 23–30 (1978).

    Article  CAS  Google Scholar 

  21. Welker, C. J. comp. Neurol. 166, 173–189 (1976).

    Article  CAS  Google Scholar 

  22. Simons, D. J. J. Neurophysiol. 41, 798–820 (1978).

    Article  CAS  Google Scholar 

  23. Fitzgerald, M. Brain Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, P., Fitzgerald, M., Nussbaumer, J. et al. Somatotopic maps are disorganized in adult rodents treated neonatally with capsaicin. Nature 295, 691–693 (1982). https://doi.org/10.1038/295691a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295691a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing