Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis

Abstract

During endocytosis, clathrin and the clathrin adaptor protein AP-2 (ref. 1), assisted by a variety of accessory factors, help to generate an invaginated bud at the cell membrane2,3. One of these factors is Eps15, a clathrin-coat-associated protein that binds the α-adaptin subunit of AP-2 (48). Here we investigate the function of Eps15 by characterizing an important binding partner for its region containing EH domains9; this protein, epsin, is closely related to the Xenopus mitotic phosphoprotein MP90 (ref. 10) and has a ubiquitous tissue distribution. It is concentrated together with Eps15 in presynaptic nerve terminals, which are sites specialized for the clathrin-mediated endocytosis of synaptic vesicles. The central region of epsin binds AP-2 and its carboxy-terminal region binds Eps15. Epsin is associated with clathrin coats in situ, can be co-precipitated with AP-2 and Eps15 from brain extracts, but does not co-purify with clathrin coat components in a clathrin-coated vesicle fraction. When epsin function is disrupted, clathrin-mediated endocytosis is blocked. We propose that epsin may participate, together with Eps15, in the molecular rearrangement of the clathrin coats that are required for coated-pit invagination and vesicle fission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eps15 and epsin are highly expressed in the brain and are concentrated in nerve terminals.
Figure 2: EH-domain-containing regions of Eps15 and Eps15R bind to a 94K protein (epsin) in rat brain.
Figure 3: Primary sequence of rat epsin.
Figure 4: Subcellular localization of epsin.
Figure 5: Interaction of epsin with α-adaptin and Eps15.
Figure 6: Perturbation of epsin function impairs receptor-mediated endocytosis.

Similar content being viewed by others

References

  1. Robinson, M. S. The role of clathrin, adaptors and dynamin in endocytosis. Curr. Opin. Cell Biol. 6, 538–544 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Cremona, O. & De Camilla, P. Synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 7, 323–330 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Kirchhausen, T., Bonifacino, J. S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol. 9, 488–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Benmerah, A., Begue, B., Dautry-Varsat, A. & Cerf-Bensussan, N. The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps 15 protein. J. Biol. Chem. 271, 12111–12116 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Benmerah, A.et al. AP-2/Eps15 interactions is required for receptor-mediated endocytosis. J. Cell. Biol. 140, 1055–1062 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carbone, R.et al. eps15 and eps15R are essential components of the endocytic pathway. Cancer Res. 57, 5498–5504 (1997).

    CAS  PubMed  Google Scholar 

  7. Iannolo, G.et al. Mapping of the molecular determinants involved in the interaction between eps15 and AP-2. Cancer Res. 57, 240–245 (1997).

    CAS  PubMed  Google Scholar 

  8. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Wong, W. T.et al. Aprotein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl Acad. Sci. USA 92, 9530–9534 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stukenberg, P. T.et al. Systematic identification of mitotic phosphoproteins. Curr. Biol. 7, 338–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Salcini, A. E.et al. Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module. Genes Dev. 11, 2239–2249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McPherson, P. S.et al. Apresynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dreyling, M. H.et al. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl Acad. Sci. USA 93, 4804–4809 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srinivasan, S.et al. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur. J. Cell Biol. 74, 350–360 (1997).

    CAS  PubMed  Google Scholar 

  15. Haffner, C.et al. Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett. 419, 175–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Wendland, B. & Emr, S. D. Pan1p, Yeast eps15, Functions as a multivalent adaptor that coordinates protein–protein interactions essential for endocytosis. J. Cell Biol. 141, 71–84 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, S., Sousa, R., Tannery, N. H. & Lafer, E. M. Characterization of a novel synapse-specific protein. J. Neurosci. 12, 2144–2155 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coda, L.et al. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization. J. Biol. Chem. 273, 3003–3012 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Navone, F.et al. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol. 103, 2511–2527 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L. H., Sudhof, T. C. & Anderson, R. G. The appendage domain of alpha-adaptin is a high affinity binding site for dynamin. J. Biol. Chem. 270, 10079–10083 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Cupers, P., Jadhav, A. P. & Kirchhausen, T. Assembly of clathrin coats disrupts the association between Eps15 and AP-2 adaptors. J. Biol. Chem. 273, 1847–1850 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mayco, P. R., Link, E., Reetz, A., Morris, S. A. & Jahn, R. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J. Cell Biol. 118, 1379–1388 (1992).

    Article  Google Scholar 

  23. Bauerfeind, R., Takei, K. & De Camilli, P. Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 272, 30984–30992 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374, 186–190 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Cameron, P. L., Sudhof, T. C., Jahn, R. & De Camilli, P. Localization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis. J. Cell Biol. 115, 151–164 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Cupers, P., ter Haar, E., Boll, W. & Kirchhausen, T. Parallel dimers and antiparallel tetramers formed by epidermal growth factor receptor pathway substrate clone 15. J. Biol. Chem. 272, 33430–33434 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Roos, J. & Kelly, R. B. Dap160, a neural-specific EH- and multiple SH3-domain containing protein that interacts with Drosophila dynamin. J. Biol. Chem.(in the press).

  28. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. J. Cell Biol. 96, 1374–1388 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. David, C., McPherson, P. S., Mundigl, O. & de Camilli, P. Arole of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl Acad. Sci. USA 93, 331–335 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ringstad, N., Nemoto, Y. & De Camilli, P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl Acad. Sci. USA 94, 8569–8574 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Nemoto for help in preliminary experiments, R. Bauerfeind and O.Cremona for advice, L. Daniell and M. Salazar for help with electron microscopy, X. Zhang for technical assistance and support, and M. M. Zhou for discussion. This work was supported in part by grants from the NIH, the HFSP and the US Army Medical Research and Development Command (to P.D.C.), and from the Associazione Italiana Ricerca sul Cancro, the Consiglio Nazionale delle Ricerche, the European Community (BIOMED-2 Programme), the Armenise-Harvard Foundation and the Ferrero Foundation (to P.P.D.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro De Camilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Fre, S., Slepnev, V. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998). https://doi.org/10.1038/29555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29555

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing