Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Steroid hydrocarbons and the thermal history of sediments

Abstract

Assessment of the extents to which certain organic chemical reactions have occurred in sedimentary rocks with increasing burial depth and the associated temperature rise, can distinguish differences in the extent of their thermal maturation1–10. Heating experiments with sediments have suggested that these different reaction types have different kinetic constants11. Therefore, a measurement of the extent to which one reaction type has occurred might be expected to correspond to different values of a measurement based on a different reaction type, depending, for example, on the average sedimentary heating rate (°C Myr−1)12 of the sample. We use here two reaction types to investigate this hypothesis: (1) configurational isomerization in steroid alkanes, represented by the conversion of the biologically inherited configuration, 5α(H), 14α(H), 17α(H), 20R, in a C29 sterane to an approximately equal mixture of itself and the corresponding 20S configuration formed in the sediment6,13; and (2) apparent aromatization of two C29 monoaromatic steroid hydrocarbons (Fig. 2) assumed to be isomeric at C-5 (refs 14–21), based on retention time comparisons with synthesized C-27 analogues, to a presumed product, the C28 triaromatic steroid hydrocarbon9,14. Comparison of the extents to which these two reactions have occurred in suites of sediment samples has allowed three basins [Pannonian Basin (Pliocene), Mahakam Delta (Miocene), Paris Basin (Toarcian)] with different thermal histories to be distinguished. Extension of the hypothesis to two other sedimentary sequences suggests a higher average heating rate for the Oligocene of the Zhanhua Depression (north-east China) than for the Cretaceous of the Wyoming Overthrust Belt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ensminger, A., Van Dorsselaer, A., Spyckerelle, C., Albrecht, P. & Ourisson, G. in Advances in Organic Geochemistry 1973 (eds Tissot, B. & Bienner, F.) 245–260 (Editons Technip, Paris, 1974).

    Google Scholar 

  2. Mulheirn, L. J. & Ryback, G. Nature 256, 301–302 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Ensminger, A., Albrecht, P., Ourisson, G. & Tissot, B. in Advances in Organic Geochemistry 1975 (eds Campos, R. & Goni, J.) 45–52 (ENADIMSA, 1977).

    Google Scholar 

  4. Patience, R. L., Rowland, S. J. & Maxwell, J. R. Geochim. cosmochim. Acta 42, 1871–1875 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Seifert, W. K. & Moldowan, J. M. Geochim. cosmochim. Acta 43, 111–126 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M. & Durand, B. Geochim. cosmochim. Acta 44, 1709–1721 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Mackenzie, A. S., Quirke, J. M. E. & Maxwell, J. R. in Advances in Organic Geochemistry 1979 (eds Douglas, A. G. & Maxwell, J. R.) 239–248 (Pergamon, Oxford, 1980).

    Google Scholar 

  8. Seifert, W. K. & Moldowan, J. M. in Advances in Organic Geochemistry 1979 (eds Douglas, A. G. & Maxwell, J. R.) 229–237 (Pergamon, Oxford, 1980).

    Google Scholar 

  9. Mackenzie, A. S., Hoffman, C. F. & Maxwell, J. R. Geochim. cosmochim. Acta 45, 1345–1355 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Mackenzie, A. S., Patience, R. L., Yon, D. A. & Maxwell, J. R. Geochim. cosmochim. Acta (in the press).

  11. Mackenzie, A. S., Lewis, C. A. & Maxwell, J. R. Geochim. cosmochim. Acta (in the press).

  12. Wright, N. J. R. J. petrol. Geol. 2, 411–425 (1980).

    Article  ADS  Google Scholar 

  13. Seifert, W. K. & Moldowan, J. M. Geochim. cosmochim. Acta 45, 783–794 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Ludwig, B., Hussler, G., Wehrung, P. & Albrecht, P. Tetrahedron Lett. 22, 3313–3316 (1981).

    Article  CAS  Google Scholar 

  15. Schaeflé, J., Ludwig, B., Albrecht, P. & Ourisson, G. Tetrahedron Lett. 43, 4163–4166 (1978).

    Article  Google Scholar 

  16. Dannenberg, H., Neumann, H. G. & Dannenberg-von Dresler, D. Liebigs Ann. Chem. 674, 152–167 (1964).

    Article  CAS  Google Scholar 

  17. Turner, A. B. Chemy Ind. 13, 932–933 (1972).

    Google Scholar 

  18. Nagata, W., Terasawa, T. & Tori, K. J. Am. chem. Soc. 86, 3746–3749 (1964).

    Article  CAS  Google Scholar 

  19. Hewett, C. L. et al. JCS Perkin I, 336–340 (1975).

  20. Ludwig, B., Hussler, G., Wehrung, P. & Albrecht, P. in Advances in Organic Geochemistry 1981 (eds Bjorøy M. et al.) (Heyden, London, in the press).

  21. Seifert, W. K., Carlson, R. M. & Moldowan, J. M. in Advances in Organic Geochemistry 1981 (eds Bjorøy, M. et al.) (Heyden, London, in the press).

  22. Tissot, B. & Weite, D. H. Petroleum Formation and Occurrence (Springer, Berlin, 1978).

    Book  Google Scholar 

  23. Sajgo, Cs. in Advances in Organic Geochemistry 1979 (eds Douglas, A. G. & Maxwell, J. R.) 103–113 (Pergamon, Oxford, 1980).

    Google Scholar 

  24. Durand, B. & Oudin, J. L. Proc. 10th World Petrol. Congr. 2, 3–11 (1981).

    Google Scholar 

  25. Tissot, B., Durand, B., Espitalié, J. & Combaz, A. Bull. Am. Ass. petrol. Geol. 58, 499–506 (1974).

    CAS  Google Scholar 

  26. Maxwell, J. R., Mackenzie, A. S. & Volkman, J. K. Nature 286, 694–697 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Kirk, D. N. & Shaw, P. M. Chem. Commun. 806 (1970).

  28. Magnier, Ph., Oki, T. & Witoelar Kartaadipoetra, L. Proc. 9th World Petrol. Congr. 2, 239–250 (1975).

    Google Scholar 

  29. Goy, G. thesis, Univ. Pierre et Marie Curie (1979).

  30. Deroo, G. Internal Rep. No. 14427 (Inst. Fr. Petrol., 1967).

    Google Scholar 

  31. Powers, R. B. Oil Gas J. 180–186 (1977).

  32. Shi Ji-yang, et al. Chem. Geol. (in the press).

  33. Tissot, B., Califert-Debyser, Y., Deroo, G. & Oudin, J. L. Bull. Am. Ass. petrol. Geol. 55, 2177–2193 (1971).

    Google Scholar 

  34. Tissot, B. & Espitalié, J. J. Rev. Inst. Fr. Petrol. 30, 743–777 (1975).

    Article  CAS  Google Scholar 

  35. Snowdon, L. R. Bull. Am. Ass. petrol. Geol. 63, 1128–1138 (1979).

    CAS  Google Scholar 

  36. McKenzie, D. P. Earth planet. Sci. Lett. 40, 25–32 (1978).

    Article  ADS  Google Scholar 

  37. Beaumont, C. Geophys, J. R. astr. Soc. 65, 291–329 (1981).

    Article  ADS  Google Scholar 

  38. Seifert, W. K. & Moldowan, J. M. Geochim cosmochim. Acta 43, 77–92 (1978).

    Article  ADS  Google Scholar 

  39. Espitalie, J. et al. J. Rev. Inst. Fr. Petrol. 32, 23–42 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, A., Lamb, N. & Maxwell, J. Steroid hydrocarbons and the thermal history of sediments. Nature 295, 223–226 (1982). https://doi.org/10.1038/295223a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295223a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing