Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hot spots of frameshift mutations induced by the ultimate carcinogen N- acetoxy-N-2-acetylaminofluorene

Abstract

An important step in carcinogenesis is thought to be the initial attack of the DNA molecule by a so-called ultimate carcinogen. More than 90% of the carcinogens tested have been found to be mutagens in bacterial systems1. The covalent binding of the ultimate carcinogen to the DNA bases or phosphate groups creates a premutational lesion that in vivo is processed by the repair, replication and recombination enzymes, and eventually may be converted into a mutation. Being interested in the way that an initial premutational event is converted into a stable heritable mutation, we have sequenced stable mutations in a gene that has formed covalent adducts in vitro with N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF, a model for the ultimate metabolite of the rat liver carcinogen 2-acetylaminofluorene AAF). We show here that the mutations are mainly frameshifts involving G · C base pairs, and that certain base pairs (hotspots) are affected at relatively high frequences. These results fit a model in which N-AcO-AAF-modified guanine acts as a non-coding base that during replication results in deletion of the modified residue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCann, J., Choi, E., Yamasaki, E. & Ames, B. N. Proc. natn. Acad. Sci. U.S.A. 72, 5135–5139 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Ames, B. N., Gurney, E. G., Miller, J. A. & Bartsch, H. Proc. natn. Acad. Sci. U.S.A. 70, 782–786 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Santella, R. M., Fuchs, R. P. P. & Grunberger, D. Mutat. Res. 67, 85–87 (1979).

    Article  PubMed  Google Scholar 

  4. Landolph, J. R. & Heidelberger, C. Proc. natn. Acad. Sci. U.S.A. 76, 930–934 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Kriek, E., Miller, H. A., Juhl, V. & Miller, E. C. Biochemistry 6, 177–182 (1967).

    Article  CAS  PubMed  Google Scholar 

  6. Westra, J. G., Kriek, E. & Hittenhausen, H. Chem.-biol. Interact. 15, 149–164 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs, R. & Daune, M. Biochemistry 11, 2659–2666 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs, R. P. P. & Daune, M. P. Biochemistry 13, 4435–4440 (1974).

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs, R. P. P. Nature 257, 151–152 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fuchs, R. P. P., Lefèvre, J. F., Pouyet, J. & Daune, M. P. Biochemistry 15, 3347–3351 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Grunberger, D. & Weinstein, I. B. in Chemical Carcinogens and DNA Vol. 2 (ed. Grover, P.) 59–94 (CRC, Florida, 1979).

    Google Scholar 

  12. Ullrich, A. et al. Science 196, 1313–1319 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Radman, M. Photochem. Photobiol 32, 823–830 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Isono, K. & Yourno, J. Proc. natn. Acad. Sci. U.S.A. 71, 1612–1617 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Moore, P. D., Bose, K. K., Rabkin, S. D. & Strauss, B. S. Proc. natn. Acad. Sci. U.S.A. 78, 110–114 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Howard-Flanders, P., Boyce, R. P. & Theriot, L. Genetics 53, 1119–1136 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lefèvre, J. F., Fuchs, R. P. P. & Daune, M. P. Biochemistry 17, 2561–2567 (1978).

    Article  PubMed  Google Scholar 

  20. de Murcia, G. et al. Proc. natn. Acad. Sci. U.S.A. 76, 6076–6080 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Cohen, S. N., Chang, A. C. Y. & Hsu, L. Proc. natn. Acad. Sci. U.S.A. 69, 2110–2114 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Clewell, D. B. & Helinski, D. R. Proc. natn. Acad. Sci. U.S.A. 62, 1159–1166 (1969).

    Article  ADS  CAS  Google Scholar 

  23. Katz, L., Kingsbury, D. K. & Helinski, D. R. J. Bact. 114, 557–591.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, R., Schwartz, N. & Daune, M. Hot spots of frameshift mutations induced by the ultimate carcinogen N- acetoxy-N-2-acetylaminofluorene. Nature 294, 657–659 (1981). https://doi.org/10.1038/294657a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294657a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing