Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deuterium/hydrogen ratios in unequilibrated ordinary chondrites

Abstract

The discovery1 of oxygen of anomalous isotopic composition in the Allende meteorite during the early 1970s led to the detailed investigation of primitive materials for unusual isotopic signatures. One element studied was hydrogen; major enrichments in deuterium relative to terrestrial and proposed nebula compositions have been discerned by close examination of specific phases within various meteorite samples. Here we report high and variable deuterium enrichments in two of the most unequilibrated (unmetamorphosed) type LL3 ordinary chondrites, Bishunpur and Semarkona. Water released from bulk unseparated material by pyrolysis has δD values up to 3,000‰) (SMOW) or in absolute terms a D/H ratio of 6×10−4. Thus, one of the highest deuterium contents yet encountered for a Solar System species has been observed without considering a specific fraction of a sample. Either these meteorites contain a greater proportion of the D-rich phase first recognized in meteorite separates, or a small fraction having an even more extreme deuterium content resides within them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clayton, R. N., Grossman, L. & Mayeda, T. K. Science 182, 485–488 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Hagemann, R., Nief, G. & Roth, E. Tellus 22, 712–715 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Boato, G. Geochim. cosmochim. Acta 6, 209–220 (1954).

    Article  ADS  Google Scholar 

  4. Briggs, M. H. Nature 197, 1290 (1963).

    Article  ADS  CAS  Google Scholar 

  5. Robert, F., Merlivat, L. & Javoy, M. Meteoritics 12, 349–354 (1977).

    ADS  Google Scholar 

  6. Robert, F., Merlivat, L. & Javoy, M. Meteoritics 13, 613–615 (1978).

    ADS  CAS  Google Scholar 

  7. Robert, F., Merlivat, L. & Javoy, M. Nature 282, 785–789 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Kolodny, Y., Kerridge, J. K. & Kaplan, I. R. Earth planet. Sci. Lett. 46, 149–158 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Robert, F., Becker, R. H. & Epstein, S. Lunar planet. Sci. 11, 935–937 (1980).

    ADS  Google Scholar 

  10. Smith, J. W. & Rigby, D. Earth planet. Sci. Lett. 54, 64–66 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Robert, F. & Epstein, S. Meteoritics 15, 355–356 (1980).

    ADS  Google Scholar 

  12. Sears, D. W., Grossman, J. N., Melcher, C. L., Ross, L. M. & Mills, A. A. Nature 287, 791–795 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Huss, G. R., Keil, K. & Taylor, G. J. Geochim. cosmochim. Acta 45, 33–51 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Dodd, R. T. Jr., Van Schmus, W. R. & Koffman, D. M. Geochim. cosmochim. Acta 31, 921–951 (1967).

    Article  ADS  CAS  Google Scholar 

  15. McNaughton, N. J., Borthwick, J., Fallick, A. E. & Pillinger, C. T. Abstr. 44th met. Soc. Meet., Bern (1981).

  16. Friedman, I. & Smith, R. L. Geochim. cosmochim. Acta 15, 218–228 (1958).

    Article  ADS  CAS  Google Scholar 

  17. Noonan, A. F. & Nelen, J. A. Meteoritics 11, 111–130 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Ashworth, J. R. & Hutchison, R. Nature 256, 714–715 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Schultz, L. & Kruse, H. Nucl. Track Detect. 2, 63–103 (1978).

    Article  Google Scholar 

  20. Epstein, S. & Taylor, H. P. Proc. 3rd lunar Sci. Conf. 1429–1454 (1972).

  21. Merlivat, L., Lelu, M., Nief, G. & Roth, E. Proc. 5th lunar Sci. Conf. 1885–1895 (1976).

  22. Larimer, J. & Anders, E. Geochim. cosmochim. Acta 34, 367–387 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Geiss, J. & Reeves, H. Astr. Astrophys. 93, 189–199 (1981).

    ADS  CAS  Google Scholar 

  24. Geiss, J. & Boschler, P. Proc. 4th Solar Wind Conf. (1979).

  25. Brown, R. D. & Rice, E. Proc. R. Soc. (in the press).

  26. Moore, C. B. & Lewis, C. F. J. geophys. Res. 72, 6289–6292 (1967).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNaughton, N., Borthwick, J., Fallick, A. et al. Deuterium/hydrogen ratios in unequilibrated ordinary chondrites. Nature 294, 639–641 (1981). https://doi.org/10.1038/294639a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294639a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing