Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Precursor forms of penicillin-binding proteins 5 and 6 of E. coli cytoplasmic membrane

Abstract

Most secreted proteins of both eukaryotes and prokaryotes are synthesized as preproteins with NH2-terminal hydrophobic signal sequences which are removed during transfer of the proteins across the membrane1,2. The role of cleavable signal sequences in the insertion of proteins into the cytoplasmic membrane is not clear. Rothman and Lenard have proposed that the assembly of those integral membrane proteins that have a substantial extracytoplasmic domain (ectoproteins) occurs by a similar mechanism to that of secreted proteins, involving a cleavable signal sequence, but with complete secretion being prevented by a hydrophobic COOH–terminal region3. In eukaryotes, several ectoproteins seem to be synthesized in this way4–6 but in prokaryotes, the coat protein of M13 phage is the only reported example of a cytoplasmic membrane protein that is made as a preprotein2,7, although a non-cleavable signal-like sequence has been shown for the E. coli lactose permease8. We show here that penicillin-binding proteins 5 and 6 of Escheri-chia coli are the first examples of cytoplasmic membrane proteins, encoded by bacteria, that are processed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 835–851 (1975).

    Article  CAS  Google Scholar 

  2. Wickner, W. Science 210, 861–868 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Rothman, J. E. & Lenard, J. Science 195, 743–753 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Rothman, J. E. & Lodish, H. F. Nature 269, 775–780 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Boothroyd, J. C., Cross, G. A. M., Hoeijmakers, J. H. J. & Borst, P. Nature 288, 624–626 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Singer, P. A., Singer, H. H. & Williamson, A. R. Nature 285, 294–300 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Chang, C. N., Model, P. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 76, 1251–1255 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Ehring, R., Beyreuther, K., Wright, J. K. & Overath, P. Nature 283, 537–540 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Spratt, B. G. Phil. Trans. R. Soc. B289, 273–283 (1980).

    Article  CAS  Google Scholar 

  10. Spratt, B. G. Eur. J. Biochem. 72, 341–352 (1977).

    Article  CAS  Google Scholar 

  11. Koyasu, S., Fukuda, A. & Okada, Y. J. Biochem. 87, 363–366 (1980).

    Article  CAS  Google Scholar 

  12. Sutcliffe, J. G. Proc. natn. Acad. Sci. U.S.A. 75, 3737–3741 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Spratt, B. G., Boyd, A. & Stoker, N. G. J. Bact. 143, 569–581 (1980).

    CAS  PubMed  Google Scholar 

  14. De Pedro, M. A. & Schwarz, U. Proc. natn. Acad. Sci. U.S.A. (in the press).

  15. Waxman, D. J. & Strominger, J. L. J. biol. Chem. 256, 2059–2066 (1981).

    CAS  PubMed  Google Scholar 

  16. Waxman, D. J. & Strominger, J. L. J. biol. Chem. 255, 3964–3976 (1980).

    CAS  PubMed  Google Scholar 

  17. Waxman, D. J., Yocum, R. R. & Strominger, J. L. Phil. Trans. R. Soc. B289, 257–271 (1980).

    Article  CAS  Google Scholar 

  18. Tipper, D. J. & Strominger, J. L. Proc. natn. Acad. Sci. U.S.A. 54, 1133–1141 (1965).

    Article  ADS  CAS  Google Scholar 

  19. Zubay, G. A. Rev. Genet. 7, 267–287 (1973).

    Article  CAS  Google Scholar 

  20. Cleveland, D. W., Fisher, S. G., Kirschner, M. W. & Laemmli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, J., Holland, I. & Spratt, B. Precursor forms of penicillin-binding proteins 5 and 6 of E. coli cytoplasmic membrane. Nature 293, 307–309 (1981). https://doi.org/10.1038/293307a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293307a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing