Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genesis of rods in teleost fish retina

Abstract

Fish grow throughout life1 and new neurones are added to the retina as the eyes increase in size2–6. As the retina expands, the density of cells decreases: ganglion cells, cones and cells in the inner nuclear layer are spaced further apart in retinas from larger (older) fish2–5,7–9. In contrast, the density of rods increases during larval development and is then maintained approximately constant as the adult eye grows2–5. Previous developmental studies, in which 3H-thymidine was used to identify proliferating cells, revealed a germinal zone at the margin of the retina. The germinal cells divide to produce new retinal neurones which are added annularly at the perimeter of the growing retina5,6,10. A similar circumferential pattern of growth has been demonstrated in larval amphibians11–15. These studies concluded that the retinal margin is the only site of neurogenesis in post-embryonic retinas. In contrast, our observations suggest that new rods originate from mitotic divisions of precursor cells which are interspersed among the nuclei of mature rods within the retina. The selective addition of rods throughout the retina could explain how the proportion of rods relative to other neurones increases as the retinas of fish grow2–4,7. Preliminary reports of these experiments have appeared elsewhere16,17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. E. The Physiology of Fishes Vol. 1 (Academic, New York, 1957).

    Google Scholar 

  2. Müller, H. Zool. Jb. 63, 275–324 (1952).

    Google Scholar 

  3. Lyall, A. H. Q. Jl micros. Sci. 98, 101–110 (1957).

    Google Scholar 

  4. Wagner, H.-J. Z. Morph. Okol. Tiere. 79, 113–131 (1974).

    Article  Google Scholar 

  5. Johns, P. R. J. comp. Neurol. 176, 343–358 (1977).

    Article  CAS  Google Scholar 

  6. Meyer, R. L. Expl Neurol. 59, 99–111 (1978).

    Article  CAS  Google Scholar 

  7. Johns, P. R. & Easter, S. S. J. comp. Neurol. 176, 331–342 (1977).

    Article  CAS  Google Scholar 

  8. Ali, M. A. Growth 27, 57–76 (1963); 28, 83–89 (1964).

    Google Scholar 

  9. Kock, J.-H. & Reuter, T. J. comp. Neurol. 179, 533 (1978).

    Google Scholar 

  10. Scholes, J. H. in Neural Principles in Vision (eds Zettler, F. & Weiler, R.) 63–93 (Springer, New York, 1976).

    Book  Google Scholar 

  11. Gaze, R. M. & Watson, W. E. in Growth of the Nervous System (eds Wolstenholme, G. E. W. & O'Connor, M.) 53–67 (Churchill, London, 1968).

    Google Scholar 

  12. Hollyfield, J. G. Devl Biol. 18, 163–179 (1968).

    Article  CAS  Google Scholar 

  13. Straznicky, K. & Gaze, R. M. J. Embryol. exp. Morph. 26, 67–79 (1971).

    CAS  PubMed  Google Scholar 

  14. Jacobson, M. Brain Res. 103, 541–545 (1976).

    Article  CAS  Google Scholar 

  15. Beach, D. H. & Jacobson, M. J. comp. Neurol. 183, 603–614 (1979).

    Article  CAS  Google Scholar 

  16. Johns, P. R. Neurosci. Abstr. 6, 639 (1980).

    Google Scholar 

  17. Fernald, R. D. & Johns, P. R. Neurosci. Abstr. 6, 208 (1980).

    Google Scholar 

  18. Cleaver, J. E. Thymidine Metabolism and Cell Kinetics (North-Holland, Amsterdam, 1967).

    Google Scholar 

  19. Rogers, A. W. Techniques in Autoradiography (Elsevier, Amsterdam, 1967).

  20. Wünder, W. Z. vergl. Physiol. 3, 1–61 (1925).

    Article  Google Scholar 

  21. Walls, G. L. The Vertebrate Eye and Its Adaptive Radiation (Hafner, New York, 1967).

  22. Fraley, N. & Fernald, R. D. Z.f. Tierpych. (submitted).

  23. Blaxter, J. H. S. in Vision in Fishes: New Approaches in Research, 427–444 (Plenum, New York, 1975).

    Book  Google Scholar 

  24. Blaxter, J. H. S. & Jones, M. P. J. mar. Biol. Ass. U.K. 47, 677–679 (1967).

    Article  Google Scholar 

  25. Blaxter, J. H. S. & Staines, M. J. mar. Biol. Ass. U.K. 50, 449–460 (1970).

    Article  Google Scholar 

  26. Bernard, H. M. Q. Jl micros. Sci. 43, 23–47 (1900).

    Google Scholar 

  27. Lyall, A. H. Q. Jl micros. Sci. 98, 189–201 (1957).

    Google Scholar 

  28. Tamura, T. Bull. Jap. Soc. Sci. Fish. 22, 536–557 (1957).

    Article  Google Scholar 

  29. Easter, S. S., Johns, P. R. & Baumann, L. Vision Res. 17, 469–477 (1977).

    Article  Google Scholar 

  30. Sandy & Blaxter, J. H. S. J. mar. biol. Ass. U.K. 60, 59–71 (1980).

    Article  Google Scholar 

  31. Johns, P. R. Invest. Ophthal. vis. Sci. Suppl. 20, 150 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johns, P., Fernald, R. Genesis of rods in teleost fish retina. Nature 293, 141–142 (1981). https://doi.org/10.1038/293141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293141a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing