Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chaotic topography, mantle flow and mantle migration in the Australian–Antarctic discordance

Abstract

Oceanic crust formed over the past 30 million years at the Australian–Antarctic discordance (AAD) is characterized by chaotic sea-floor topography, reflecting a weak magma supply from an unusually cold underlying mantle. During the past 3–4 million years, however, a source of increased magma supply, coinciding with the known Indian–Pacific mantle isotopic boundary, has propagated into the eastern AAD, displacing the chaotic terrain and replacing it with normal sea floor. Pacific mantle reached the eastern boundary of the AAD at least 7 million years ago, but it was not until 3–4 million years ago that lavas derived from Pacific mantle were first erupted within the AAD. This long hiatus, combined with the ridge–transform geometry across the AAD boundary, constrains the locus of mantle migration to a narrow, relatively shallow region, directly beneath the spreading axis of the Southeast Indian ridge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional setting of the Australian–Antarctic Discordance (AAD).
Figure 2: Bathymetry of the eastern boundary region of the AAD to a maximum sea-floor age of 7 Myr.
Figure 3: Average sea-floor densities and depths calculated from gravity data along profiles on either side of the eastern AAD boundary.
Figure 4: Results of multibeam bathymetry, illuminated from direction 065°, for part of the AAD and the region to the northeast, extending to sea floor as old as 30 Myr.
Figure 5: Variation diagram showing the distinct Indian and Pacific fields defined by 208Pb/204Pb and 206Pb/204Pb isotopic ratios of lavas from the vicinity of the AAD.
Figure 6: Schematic diagrams illustrating the potentially complex relationships between a migrating mantle boundary and its expression at the sea floor, in the vicinity of a transform fault.

Similar content being viewed by others

References

  1. Weissel, J. K. & Hayes, D. E. The Australian-Antarctic Discordance; new results and implications. J.Geophys. Res. 79, 2579–2587 (1974).

    Article  ADS  Google Scholar 

  2. Forsyth, D. W., Ehrenbard, R. L. & Chapin, S. Anomalous upper mantle beneath the Australian-Antarctic Discordance. Earth Planet. Sci. Lett. 84, 471–478 (1987).

    Article  ADS  Google Scholar 

  3. Marks, K., Vogt, P. R. & Hall, S. A. Residual depth anomalies and the origin of the Australian-Antarctic Discordance. J. Geophys. Res. 95, 17325–17337 (1990).

    Article  ADS  Google Scholar 

  4. West, B. P., Sempéré, J.-C., Pyle, D. G., Phipps Morgan, J. & Christie, D. M. Evidence for variable upper mantle temperature and crustal thickness in and near the Australian-Antarctic Discordance. Earth Planet Sci. Lett. 128, 135–153 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Palmer, J., Sempéré, J.-C., Christie, D. M. & Morgan, J. P. Morphology and tectonics of the Australian-Antarctic Discordance between 123° E and 128° E. Mar. Geophys. Res. 15, 121–152 (1993).

    Article  Google Scholar 

  6. Sempéré, J.-C., Palmer, J., Christie, D., Morgan, J. P. & Shor, A. Australian-Antarctic Discordance. Geology 19, 429–432 (1991).

    Article  ADS  Google Scholar 

  7. Sempéré, J.-C., West, B. P. & Géli, L. in Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-ocean Ridges(eds MacLeod, C. J., Tyler, P. A. & Walker, C. A.) 1–5 (Geol. Soc., London, (1996)).

    Google Scholar 

  8. West, B. P. Mantle flow and crustal accretion in and near the Australian Antarctic Discordance. Ph.D. thesis.University of Washington, Seattle.(1997).

  9. Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature 333, 623–629 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Pyle, D. G., Christie, D. M. & Mahoney, J. J. Resolving an isotope boundary within the Australian-Antarctic Discordance. Earth Planet. Sci. Lett. 112, 161–178 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Hey, R. N., Sinton, J. M. & Duennebier, F. K. in The Geology of North America: The Eastern Pacific Ocean and Hawaii(eds Winterer, E. L., Hussong, D. M. & Decker, R. W.) 161–176 (Geol. Soc. Am., Denver, CO, (1989)).

    Google Scholar 

  12. Blackman, D. K., Cann, J. R. & Janssen, B. The structure of oceanic core complexes: new observations from the Mid-Atlantic Ridge at Atlantis transform fault. Eos 78, F663 (1997).

    Google Scholar 

  13. Tuckholke, B. E., Lin, J. & Kleinrock, M. C. Relation between rift-axis magmatism, frequency of detachment faulting and development of inside-corner highs in slow-spreading crust. Eos 78, F663 (1997).

    Google Scholar 

  14. Pyle, D. G. Geochemistry of mid-ocean ridge basalt within and surrounding the Australian Antarctic Discordance. Ph.D. thesis. (Oregon State University, Corvallis. (1994)).

  15. Cann, J. R.et al. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385, 329–332 (1997).

    Article  ADS  Google Scholar 

  16. Cannat, M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res. 98, 4163–4172 (1993).

    Article  ADS  Google Scholar 

  17. Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. 101, 2847–2857 (1996).

    Article  ADS  Google Scholar 

  18. Karson, J. A. & Elthon, D. Evidence for variations in magma production along oceanic spreading centers: a critical appraisal. Geology 15, 127–131 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Bonatti, E. Anomalous opening of the Equatorial Atlantic. Earth Planet. Sci. Lett. 143, 147–160 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Tucholke, B. E. & Lin, J. Ageological model for the structure of ridge segments in slow-spreading ocean crust. J. Geophys. Res. 99, 11937–11958 (1994).

    Article  ADS  Google Scholar 

  21. Madsen, J. A., Grindlay, N. R., Rommeveaux, C. & Sclater, J. Morphologic characteristics of ridge segments along the Southwest Indian Ridge, 15–35 degrees E. Eos 77, F671 (1996).

    Google Scholar 

  22. Grindlay, N. R., Madsen, J. A., Rommeveaux, C. & Sclater, J. Segmentation of the Southwest Indian Ridge, 15–25° E. Eos 77, F672 (1996).

    Google Scholar 

  23. Klein, E. M. & Karsten, J. L. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature 374, 52–57 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Dick, H. J. B. in Magmatism in the Ocean Basins(eds Saunders, A. D. & Norry, M. J.) 71–105 (Geol. Soc., London, (1989)).

    Google Scholar 

  25. Schilling, J.-G. Iceland mantle plume: Geochemical evidence along Reykjanes Ridge. Nature 242, 565–571 (1973).

    Article  ADS  CAS  Google Scholar 

  26. Schilling, J.-G., Kingsley, R. H. & Devine, J. D. Galapagos hot spot-spreading center system 1. spatial petrological and geochemical variations (83° W–101° W). J. Geophys. Res. 87, 5593–5610 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Schilling, J.-G. Upper mantle heterogeneites and dynamics. Nature 314, 62–67 (1985).

    Article  ADS  Google Scholar 

  28. Mahoney, J. J.et al. Isotope and tracer element characteristics of a super-fast spreading ridge: East Pacific Rise, 13–23° S. Earth Planet. Sci. Lett. 121, 173–193 (1993).

    Article  ADS  Google Scholar 

  29. Mahoney, J. J.et al. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J. Geophys. Res. 94, 4033–4052 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Pyle, D. G., Christie, D. M., Mahoney, J. J. & Duncan, R. A. Geochemistry and geochronology ofancient southeast Indian and southwest Pacific seafloor. J. Geophys. Res. 100, 22261–22282 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Lanyon, R., Crawford, A. J. & Eggins, S. M. Westward migration of Pacific Ocean upper mantle into the Southern Ocean region between Australia and Antarctica. Geology 23, 511–514 (1995).

    Article  ADS  CAS  Google Scholar 

  32. West, B. P., Wilcock, W. S. D., Sempéré, J.-C. & Géli, L. Three-dimensional structure of asthenospheric flow beneath the Southeast Indian Ridge. J. Geophys. Res. 102, 7783–7802 (1997).

    Article  ADS  Google Scholar 

  33. Anderson, R. N., Spariosu, D. J., Weissel, J. K. & Hayes, D. E. The interrelation between variations in magnetic anomaly amplitudes and basalt magnetization and chemistry along the Southeast Indian Ridge. J. Geophys. Res. 85, 3883–3898 (1980).

    Article  ADS  CAS  Google Scholar 

  34. Hayes, D. E. & West, J. K. Depth anomalies in the Southeast Indian Ocean (abstr.). Geol. Soc. Am. Abstr. Programs 6, 784 (1974).

    Google Scholar 

  35. Gurnis, M., Müller, R. D. & Moresi, L. Cretaceous vertical motion of Australia and the Australian-Antarctic Discordance. Science 279, 1499–1504 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Anderson, R. N., Spariosu, D. J., Weissel, J. K. & Hayes, D. E. The interrelation between variations in magnetic anomaly amplitudes and basal magnetization and chemistry along the Southeast Indian Ridge. J. Geophys. Res. 85, 3883–3898 (1980).

    Article  ADS  CAS  Google Scholar 

  37. Klein, E. M., Langmuir, C. H. & Staudigel, H. Geochemistry of basalts from the Southeast Indian Ridge, 115° E–138° E. J. Geophys. Res. 96, 2089–2107 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Alvarez, W. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. J. Geophys. Res. 87, 6697–6710 (1982).

    Article  ADS  Google Scholar 

  39. Alvarez, W. Geologic evidence for the plate driving mechanism: the continental undertow hypothesis and the Australian-Antarctic Discordance. Tectonics 9, 1213–1220 (1990).

    Article  ADS  Google Scholar 

  40. Crawford, A. J., Briquieu, L., Laporte, C. & Hasenaka, T. Coexistence of Indian and Pacific Oceanic Upper Mantle Reservoirs Beneath the Central New Hebrides Island Arc 199–217 (AGU Monogr. 88, Am. Geophys. Union, Washington, DC, (1995)).

    Google Scholar 

  41. Hergt, J. M. & Hawkesworth, C. J. Pb, Sr and Nd isotopic evolution of the Lau Basin: Implications for mantle dynamics during backarc opening. Proc. ODP 135, 505–517 (1994).

    CAS  Google Scholar 

  42. West, B. P., Christie, D. M. Diversion of along-axis asthenospheric flow beneath migrating ridge-transform-ridge intersections. Eos 78, F673 (1997).

    Google Scholar 

  43. McKenzie, D. P. & Bowin, C. The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res. 81, 1903–1915 (1976).

    Article  ADS  Google Scholar 

  44. Wessel, P. & Smith, W. H. F. Free software helps map and display data. Eos 72, 445–446 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christie, D., West, B., Pyle, D. et al. Chaotic topography, mantle flow and mantle migration in the Australian–Antarctic discordance. Nature 394, 637–644 (1998). https://doi.org/10.1038/29226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29226

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing