Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of helium platelets in molybdenum

Abstract

Over the past two decades, helium introduced into metals either by ion implantation or by the (n, α) reaction has been studied over a wide range of concentrations and temperatures1,2. Early studies were relevant to fission reactor technology3,4 but more recent emphasis has been on the role of helium in fusion reactor environments. One area of interest concerns the interaction of helium ions from the plasma with the first-wall surface while the influence of the helium from the (n, α) reaction on void nucleation, and on grain boundary bubble nucleation, is also under investigation5. One long-established property of insoluble helium and other inert gases in metals is their tendency to precipitate as bubbles. However, the inference that inert gas clusters always assume a three-dimensional form may not be justified. We present here experimental evidence showing that, at least in molybdenum, helium can initially aggregate in an unexpected planar form. Furthermore, we have found a bubble nucleation route involving the formation of several small bubbles from a single helium platelet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blackburn, R. Metall. Rev. 11, 159–176 (1966).

    Google Scholar 

  2. Pugh, S. F. (ed.) Radiat. Effects 53, 105–278 (1981); AERE Rep. 9733 (Harwell, 1980).

  3. Barnes, R. S. Nature 206, 1307–1310 (1965).

    Article  ADS  CAS  Google Scholar 

  4. Harries, D. R. J. Br. nucl. Soc. 5, 74–87 (1966).

    Google Scholar 

  5. Wiffen, F. W., DeVan, J. H. & Stiegler, J. O. (eds) J. nucl. Mater. 85/86 (1979).

  6. Mazey, D. J., Eyre, B. L., Evans, J. H., Erents, S. K. & McCracken, G. M. J. nucl. Mater. 64, 145–156 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Johnson, P. B. & Mazey, D. J. Nature 276, 595–596 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Johnson, P. B. & Mazey, D. J. J. nucl. Mater. 93/94 721–727 (1980).

    Article  ADS  Google Scholar 

  9. van Veen, A. & Caspers, L. M. AERE Rep. 9733, 494–517 (Harwell, 1980).

  10. Kornelsen, E. & van Gorkum, A. A. J. nucl. Mater. 92, 79–88 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Caspers, L. M., Fastenau, R. H. J., van Veen, A. & van Heugten, W. F. W. M. Phys. Status Solidi A46, 541–546 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Donnelly, S. E., Rife, J. C., Gilles, J. M. & Lucas, A. A. J. nucl. Mater. 93/94, 767–772 (1980).

    Article  ADS  Google Scholar 

  13. Jostens, A. & DuBose, C. K. H. J. nucl. Mater. 44, 91–95 (1972).

    Article  ADS  Google Scholar 

  14. Ashbee, K. H. G., Frank, F. C. & DuBose, C. K. H. J. nucl. Mater. 48, 193–198 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Hollenberg, G. W., Mastel, B. & Basmajian, J. A. J. Am. ceram. Soc. 63, 376–380 (1980).

    Article  CAS  Google Scholar 

  16. deHosson, J. Th. M. Phys. Status Solidi A40, 293–301 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Caspers, L. M., Ypma, M. R., van Veen, A. & van der Kolk, G. J. Phys. Status Solidi (in the press).

  18. Evans, J. H., van Veen, A. & Caspers, L. M. Scr. Metal. 15, 323–326 (1981).

    Article  CAS  Google Scholar 

  19. Greenwood, G. W., Foreman, A. J. E. & Rimmer, D. E. J. nucl. Mater. 1, 305–324 (1959).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J., van Veen, A. & Caspers, L. Formation of helium platelets in molybdenum. Nature 291, 310–312 (1981). https://doi.org/10.1038/291310a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291310a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing