Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantitative retention of magmatic argon in a glassy basalt

Abstract

Basalts erupted in deep waters commonly chill sufficiently rapidly to form a glass outer skin. Due to the rapid chilling and the high hydrostatic pressures, magma-ambient gases and in particular the rare gases may be trapped within this glass1–3. Several theoretical investigations have examined the relationship of the trapped 40Ar/36Ar ratio to the history of terrestrial degassing and formation of the atmosphere4–11. These measurements have not yet, however, answered the fundamental questions of whether the mantle 40Ar/36Ar ratio varies significantly either vertically within the Earth and/or from one geographic locality to another, or even whether a quantitative estimate of the magmatic concentration and isotopic ratio at any given location is in fact obtainable. This report deals with the last of these questions. Our data indicate that the answer is in the affirmative.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Funkhouser, J. G., Fisher, D. E. & Bonatti, E. Earth. planet. Sci. Lett. 5, 95–100 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Noble, C. S. & Naughton, J. J. Science 162, 265–267 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Dalrymple, G. B. & Moore, J. G. Science 161, 1132–1135 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Brown, J. F. Harper, C. T. & Odom, A. L. Nature 250, 130–133 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Alexander, E. C. Jr. & Schwartzman, D. W. Nature 259, 104–108 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Hamano, Y. & Ozima, M. Terr. Rare. Gases. 155–171 (1978).

  7. Ozima, M. Geochim. cosmochim. Acta. 39, 1127–1134 (1975).

    Article  ADS  Google Scholar 

  8. Schwartzman, D. W. Nature 245, 20–21 (1973a).

    Article  ADS  CAS  Google Scholar 

  9. Schwartzman, D. W. Geochim. cosmochim. Acta. 37, 2479–2495 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Tolstikhin, I. N., Drubestkai, E. R. & Sharashin, A. Ya. Geokhimiya No. 4, S 14–20 (1978).

  11. Fisher, D. E. Terr. Rare. Gases. 173–183 (1978).

  12. Dymond, J. & Hogan, L. Earth. planet. Sci. Lett. 38, 117–128 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Fisher, D. E. Earth. planet. Sci. Lett. 9, 331–335 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Fisher, D. E. Nature 256, 113–114 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Dymond, J. & Hogan, L. Earth. planet. Sci. Lett. 20, 131 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Takaoka, N. & Nagao, K. Init. Rep. DSDP Legs 1–3 1121–1126 (1980).

    Google Scholar 

  17. Hart, R., Dymond, J. & Hogan, L. Nature 278, 156–159 (1980).

    Article  ADS  Google Scholar 

  18. Fisher, D. E. Nature 282, 825–827 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Schwartzman, D. W. Terr. Rare. Gases 185–192 (1978).

  20. Fisher, D. E. Geochim. cosmochim. Acta. (in the press).

  21. Craig, H. & Lupton, J. E. Earth. planet. Sci. Lett. 31, 369–385 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Fisher, D. E. Geophys. Res. Lett. 1, 161–164 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Tolstikhin, I. N. Terr. Rare. Gases 33–62 (1978).

  24. Manuel, O. K. Terr. Rare. Gases 85–91 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, D. Quantitative retention of magmatic argon in a glassy basalt. Nature 290, 42–43 (1981). https://doi.org/10.1038/290042a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/290042a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing