Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Expression of the E. coli uvrA gene is inducible

Abstract

UvrA+-dependent excision repair1, 2 is one of the most important systems in Escherichia coli for repairing UV-induced pyrimidine dimers1 and a variety of other forms of DNA damage3, 4. The uvrA protein acts in conjunction with the uvrB and uvrC gene products to introduce a nick at the site of a DNA lesion and thus initiate the repair process1. We have recently used the Mud(Ap, lac)5 operon fusion vector to identify a set of genes whose expression is induced by DNA damage. One Mud(Ap, lac) insertion mapped at the uvrA locus and made the cells sensitive to UV light. In this fusion strain, β-galactosidase expression was induced by DNA-damaging agents in a recA+ lexA+-dependent fashion6. We were surprised by this result because uvrA+-dependent excision repair is observed both in cells in which protein synthesis has been inhibited7 and in recA and lexA cells8, findings which have led to the conclusion that the uvrA gene product is constitutively expressed and not under the control of the complex recA+lexA+ regulatory circuitry9 (see below). We have investigated this possibility further and describe here the generation and characterization of a set of fusions of the lac genes to the promoter of the uvrA gene. We confirm that the uvrA gene product is induced by DNA damage in a recA+lexA+-dependent fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seeberg, E. Proc. natn. Acad. Sci. U.S.A. 75, 2569–2573 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Hanawalt, P. C. Cooper, P. K., Ganesan, A. K. & Smith, C. A. A. Rev. Biochem. 48, 783–836 (1979).

    Article  CAS  Google Scholar 

  3. Ikenaga, M., Ichikawa-Ryo, H. & Kondo, S. J. molec. Biol. 75, 341–356 (1975).

    Article  Google Scholar 

  4. Boyce, R. P. & Howard-Flanders, P. Z. VerebungLehre. 95, 345–350 (1969).

    Google Scholar 

  5. Casadaban, M. J. & Cohen, S. N. Proc. natn. Acad. Sci. U.S.A. 76, 4530–4533 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Kenyon, C. J. & Walker, G. C. Proc. natn. Acad. Sci. U.S.A. 77, 2819–2823 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Boyle, J. M. & Setlow, R. B. J. molec. Biol. 51, 131–144 (1970).

    Article  CAS  Google Scholar 

  8. Clark, A. J. & Volkert, M. R. in DNA Repair Mechanisms (eds Hanawalt, P. C., Friedberg, E. C. & Fox, C. F.) 57–72 (Academic, New York, 1978).

    Book  Google Scholar 

  9. Radman, M. in Molecular Mechanisms for Repair of DNA (eds Hanawalt, P. C. & Setlow, R. B.) 355–367 (Plenum, New York, 1975).

    Book  Google Scholar 

  10. Faelen, M., Huisman, O. & Toussaint, A. Nature 271, 580–582 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  12. Howard-Flanders, P., Boyce, R. P. & Theriot, L. Genetics 53, 1137–1150 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishii, Y. & Kondo, S. Mutat. Res. 27, 27–44 (1975).

    Article  CAS  Google Scholar 

  14. Kondo, S., Ichikawa, H., Iwo, K. & Kato, T. Genetics 66, 187–217 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sancar, A. et al. J. molec. Biol. (submitted).

  16. Witkin, E. M. Bact. Rev. 40, 869–907 (1976).

    CAS  Google Scholar 

  17. Mount, D. W. Proc. natn. Acad. Sci. U.S.A. 74, 300–304 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Brent, R. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 77, 1932–1936 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Little, J. W., Edmiston, S. H., Pacelli, L. Z. & Mount, D. W. Proc. natn. Acad. Sci. U.S.A. 77, 3225–3229 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Roberts, J., Roberts, C. & Craig, N. Proc. natn. Acad. Sci. U.S.A. 75, 4714–4718 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Morand, P., Blanco, M. & Devoret, R. J. Bact. 131, 572–582 (1977).

    CAS  PubMed  Google Scholar 

  22. Mount, D. W., Walker, A. C. & Kosel, C. J. Bact. 121, 1203–1207 (1975).

    CAS  Google Scholar 

  23. Rothman, R. H., Margossian, L. J. & Clark, A. J. Molec. gen. Genet. 169, 279–287 (1979).

    Article  CAS  Google Scholar 

  24. Walker, G. C. & Dobson, P. P. Molec. gen. Genet. 172, 17–24 (1979).

    Article  CAS  Google Scholar 

  25. Swenson, P. A. & Setlow, R. B. J. molec. Biol. 15, 201–219 (1966).

    Article  CAS  Google Scholar 

  26. Cooper, P. K. & Hanawalt, P. C. Proc. natn. Acad. Sci. U.S.A. 69, 1156–1160 (1972).

    Article  ADS  CAS  Google Scholar 

  27. Low, K. B. Bact. Rev. 36, 587–607 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenyon, C., Walker, G. Expression of the E. coli uvrA gene is inducible. Nature 289, 808–810 (1981). https://doi.org/10.1038/289808a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289808a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing