Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unique transforming gene in carcinogen-transformed mouse cells

Abstract

Observations from various biological systems suggest that chemical carcinogens transform cells by causing somatic mutations through interacting with DNA1–5. These observations raise several fundamental questions regarding the nature of the transforming genes that are the target of the carcinogens. For example, are there unique target gene(s) for chemical carcinogens, or are there multiple potential targets, any of which, when altered, can induce the transformed phenotype? This problem has been approached previously by comparing the rate of transformation by chemical carcinogens with the rate of appearance of dominant mutations in unique cellular genes encoding selectable markers. The results suggested a limited number of targets for transformation, since transformation occurred at a rate that was only 10–100 times greater than the appearance of ouabain-resistant mutants6–8. These results, however, are only rough estimates, because the optimal conditions for induction of transformation and the induction of mutations are known to differ6. In addition, lesions other than point mutations caused by carcinogens, such as frame-shifts, may induce transformation efficiency but not ouabain resistance. We now present an alternative experimental approach to estimating the number of targets for chemical carcinogens, based on the fact that DNAs of certain chemically transformed cell lines can induce the appearance of foci when transferred on to NIH3T3 cells9. These DNAs were treated with a variety of restriction endonucleases before testing their transforming activities by DNA transfer. We have found the same pattern of sensitivity and resistance to inactivation by different endonucleases in all DNAs studied, suggesting that the same transforming gene is being transferred in all cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCann, J., Choi, E., Yamasaki, E. & Ames, B. N. Proc. natn. Acad. Sci. U.S.A. 72, 5135–5139 (1975).

    Article  ADS  CAS  Google Scholar 

  2. McCann, J. & Ames, B. N. Proc. natn. Acad. Sci. U.S.A. 73, 950–954 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Bridges, B. A. Nature 261, 195–200 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bouck, N. & diMayorca, G. Nature 264, 722–727 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Barrett, J. C., Tsutsui, T. & Ts'o, P. O. P. Nature 274, 229–232 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Landolph, J. R. & Heidelberger, C. Proc. natn. Acad. Sci. U.S.A. 76, 930–934 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Parodi, S. & Brambilla, G. Mutat. Res. 47, 53–74 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Huberman, E., Mager, R. & Sachs, L. Nature 264, 360–361 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Shih, C., Shilo, B., Goldfarb, M. P., Dannenberg, A. & Weinberg, R. A. Proc. natn. Acad. Sci. U.S.A. 76, 5714–5718 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Shilo, B. et al. 12th Miami Winter Symp. (in the press).

  11. Cooper, G. M., Okenquist, S. & Silverman, L. Nature 284, 418–421 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Shih, C., Padhy, L. C., Murray, M. & Weinberg, R.A. (in preparation).

  13. Andersson, P., Goldfarb, M. P. & Weinberg, R. A. Cell 16, 63–75 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Canaani, E., Robbins, K. C. & Aaronson, S. A. Nature 282, 378–383 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Oskarsson, M., McClements, W. L., Blair, D. G., Maizel, J. V. & Vande Woude, G. F. Science 207, 1222–1224 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ellis, R. W. et al. J. Virol. 35, 79–92 (1980).

    Google Scholar 

  17. Reznikoff, C. A., Bertram, J. S., Brankow, D. W. & Heidelberger, C. Cancer Res. 33, 3239–3249 (1973).

    CAS  PubMed  Google Scholar 

  18. Rapp, U. R., Nowinski, R. C., Reznikoff, C. A. & Heidelberger, C. Virology 65, 392–409 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Benveniste, R. E., Todaro, G. J., Scolnick, E. M. & Parks, W. P. J. Virol. 12, 711–720 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilo, BZ., Weinberg, R. Unique transforming gene in carcinogen-transformed mouse cells. Nature 289, 607–609 (1981). https://doi.org/10.1038/289607a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289607a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing