Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential regulation of the α2-adrenergic receptor by Na+ and guanine nucleotides

Abstract

Many hormones interact with receptors which stimulate the enzyme adenylate cyclase. Less well characterized are those receptors which mediate an inhibition of adenylate cyclase activity1. However, guanine nucleotides are clearly important in the regulation of both stimulatory and inhibitory receptors2. Monovalent cations, notably Na+, regulate many inhibitory receptor systems but apparently not stimulatory receptors1. We investigate here the effects of Na+ and guanine nucleotides on the adenylate cyclase-coupled inhibitory α2-adrenergic receptor of the rabbit platelet3. Computer modelling of adrenaline competition curves with 3H-dihydroergocryptine (3H-DHE) indicates that adrenaline induces two distinct affinity states of the α2 receptor—one of higher (α2H) and the other of lower (α2L) affinity. Guanyl-5′-yl-imidodiphosphate (Gpp(NH)p) seems to reduce adrenaline affinity by converting the high-affinity state into the low-affinity form of the receptor. In contrast, Na+ reduces adrenaline affinity at both the high- and low-affinity states of the α2 receptor while preserving receptor heterogeneity. Thus, guanine nucleotides and Na+ differ in the manner by which each reduces agonist affinity for the α2-adrenergic receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jakobs, K. H. Molec. cell. Endocr. 16, 147–156 (1979).

    Article  CAS  Google Scholar 

  2. Rodbell, M. Nature 284, 17–22 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Harwood, J. P., Moskowitz, J. & Krishna, G. Biochem. biophys. Acta 261, 444–456 (1972).

    Article  CAS  Google Scholar 

  4. Hoffman, B. B., De Lean, A., Wood, C. L., Schocken, D. D. & Lefkowitz, R. J. Life Sci. 24, 1739–1746 (1979).

    Article  CAS  Google Scholar 

  5. Hoffman, B. B., Mullikin-Kilpatrick, D. & Lefkowitz, R. J. J. biol. Chem. 255, 4645–4652 (1980).

    CAS  PubMed  Google Scholar 

  6. Kent, R. S., De Lean, A. & Lefkowitz, R. J. Molec. Pharmac. 17, 14–23 (1980).

    CAS  Google Scholar 

  7. Tsai, B. S. & Lefkowitz, R. J. Molec. Pharmac. 14, 540–548 (1978).

    CAS  Google Scholar 

  8. Blume, A. J. Proc. natn. Acad. Sci. U.S.A. 75, 1713–1717 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Rosenberger, L. B., Yamamura, H. I. & Roeske, W. R. J. biol. Chem. 255, 820–823 (1980).

    CAS  PubMed  Google Scholar 

  10. Tsai, B. S. & Lefkowitz, R. J. Molec. Pharmac. 16, 61–68 (1979).

    CAS  Google Scholar 

  11. Glossman, H. & Presek, P. Naunyn-Schmiedebergs Archs Pharmak. 306, 67–73 (1979).

    Article  Google Scholar 

  12. Greenberg, D. A., U'Prichard, D. C., Sheehan, P. & Snyder, S. H. Brain Res. 140, 378–384 (1978).

    Article  CAS  Google Scholar 

  13. Steer, M. L. & Wood, A. J. biol. Chem. 254, 10791–10797 (1979).

    CAS  PubMed  Google Scholar 

  14. Blume, A. J., Lichtenstein, D. & Boone, G. Proc. natn. Acad. Sci. U.S.A. 76, 5626–5630 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Lichtenstein, D., Boone, G. & Blume, A. J. Cyclic Nucleotide Res. 5, 367–375 (1979).

    Google Scholar 

  16. Aktories, K., Schultz, G. & Jakobs, K. H. FEBS Lett. 107, 100–104 (1979).

    Article  CAS  Google Scholar 

  17. Limbird, L. E., Gill, D. M. & Lefkowitz, R. J. Proc. natn. Acad. Sci. U.S.A. 77, 775–779 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Stadel, J. M., De Lean, A. & Lefkowitz, R. J. J. biol. Chem. 255, 1436–1441 (1980).

    CAS  PubMed  Google Scholar 

  19. Feldman, H. A. Analyt. Biochem. 48, 317–338 (1972).

    Article  CAS  Google Scholar 

  20. Fletcher, J. E. & Schrager, R. I. A User's Guide to Least Squares Curve Fitting Tech. Rep. No. 1 (U.S. Dep. of Health, Education and Welfare, 1973).

    Google Scholar 

  21. Rodbard, D. & Frazier, G. R. Meth. Enzym. 37B, 3–22 (1975).

    Article  CAS  Google Scholar 

  22. De Lean, A., Munson, P. J. & Rodbard, D. Am. J. Physiol. 235, E97–E102 (1978).

    Article  CAS  Google Scholar 

  23. Hancock, A. A., De Lean, A. & Lefkowitz, R. J. Molec. Pharmac. 16, 1–9 (1979).

    CAS  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Fain, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, T., Hoffman, B. & Lefkowitz, R. Differential regulation of the α2-adrenergic receptor by Na+ and guanine nucleotides. Nature 288, 709–711 (1980). https://doi.org/10.1038/288709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing