Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

lunatic fringe is an essential mediator of somite segmentation and patterning

Abstract

The gene lunatic fringe encodes a secreted factor with significant sequence similarity to the Drosophila gene fringe1,2,3,4,5. fringe has been proposed to function as a boundary-specific signalling molecule in the wing imaginal disc, where it is required to localize signalling activity by the protein Notch to the presumptive wing margin3,6. By targeted disruption in mouse embryos, we show here that lunatic fringe is likewise required for boundary formation. lunatic fringe mutants fail to form boundaries between individual somites, the initial segmental unit of the vertebrate trunk. In addition, the normal alternating rostral–caudal pattern of the somitic mesoderm is disrupted, suggesting that intersomitic boundary formation and rostral–caudal patterning of somites are mechanistically linked by a process that requires lunatic fringe activity. As a result, the derivatives of the somitic mesoderm, especially the axial skeleton, are severely disorganized in lunatic fringe mutants. Taken together, our results demonstrate an essential function for a vertebrate fringe homologue and suggest a model in which lunatic fringe modulates Notch signalling in the segmental plate to regulate somitogenesis and rostral–caudal patterning of somites simultaneously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and targeting of lunatic fringe.
Figure 2: Skeletal phenotype of lunatic fringe mutant mice.
Figure 3: Gross, histological, and immunohistochemical analysis of segmentation in wild-type and lunatic fringe mutant embryos.
Figure 4: Gene expression is altered in the somitic mesoderm of lunatic fringe mutants at 9–9.5 d.p.c
Figure 5: Models for lunatic fringe function during somite segmentation and rostral–caudal patterning.

Similar content being viewed by others

References

  1. Cohen, B. et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nature Genet. 16, 283–288 (1997).

    Article  CAS  Google Scholar 

  2. Johnston, S. H. et al. Afamily of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124, 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  3. Irvine, K. D. & Wieschaus, E. fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing develpment. Cell 79, 595–606 (1994).

    Article  CAS  Google Scholar 

  4. Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Wu, J. Y., Wen, L., Zhang, W. J. & Rao, Y. The secreted product of Xenopus gene lunatic fringe, a vertebrate signaling molecule. Science 273, 355–358 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Gossler, A. & Hrabe de Angelis, M. Somitogenesis. Curr. Top. Dev. Biol. 38, 225–287 (1998).

    Article  CAS  Google Scholar 

  8. Christ, B., Schmidt, C., Huang, R., Wilting, J. & Brand-Saberi, B. Segmentation of the vertebrate body. Anat. Embryol. (Berlin) 197, 1–8 (1998).

    Article  CAS  Google Scholar 

  9. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374–377 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Deutsch, U., Dressler, G. R. & Gruss, P. Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell 53, 617–625 (1988).

    Article  CAS  Google Scholar 

  11. Neubuser, A., Koseki, H. & Balling, R. Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev. Biol. 170, 701–716 (1995).

    Article  CAS  Google Scholar 

  12. Edmondson, D. G. & Olson, E. N. Agene with homology of the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3, 628–640 (1989).

    Article  CAS  Google Scholar 

  13. Mansouri, A. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev. Dyn. 210, 53–65 (1997).

    Article  CAS  Google Scholar 

  14. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J. L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  15. Dodd, J., Morton, S. B., Karagogeos, D., Yamamoto, M. & Jessell, T. M. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1, 105–115 (1988).

    Article  CAS  Google Scholar 

  16. Stern, C. D. & Keynes, R. J. Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99, 261–272 (1987).

    CAS  PubMed  Google Scholar 

  17. Takebayashi, K., Akazawa, C., Nakanishi, S. & Kageyama, R. Structure and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-5. Indentification of the neural precursor cell-specific promoter element. J. Biol. Chem. 270, 1342–1349 (1995).

    Article  CAS  Google Scholar 

  18. de la Pompa, J. L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  19. Swiatek, P. J., Lindsell, C. E., del Amo, F. F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).

    Article  CAS  Google Scholar 

  20. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  PubMed  Google Scholar 

  21. 1. Hrabe de Angelis, M., McIntyre, J. N. & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Williams, R., Lendahl, U. & Lardelli, M. Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech. Dev. 53, 357–368 (1995).

    Article  CAS  Google Scholar 

  23. Dunwoodie, S. L., Henrique, D., Harrison, S. M. & Beddington, R. S. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076 (1997).

    CAS  PubMed  Google Scholar 

  24. Mitsiadis, T. A., Henrique, D., Thesleff, I. & Lendahl, U. Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial–mesenchymal interactions and fibroblast growth factor-4. Development 124, 1473–1483 (1997).

    CAS  PubMed  Google Scholar 

  25. Jen, W. C., Wettstein, D., Turner, D., Chitnis, A. & Kintner, C. The Notch ligand X-delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos. Development 124, 1169–1178 (1997).

    CAS  PubMed  Google Scholar 

  26. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  27. McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  28. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Press, New York, 1994).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German National Merit Foundation (to A.A.), the M.D. Anderson Cancer Center Core, March of Dimes, and the NIH (to R.L.J.). We thank R.Beddington, D. Conner, J. Flanagan, A. Gossler, P. Gruss, F. Guillemot, P. Hasty, D. Henrique, B. Hogan, W. Klein, E. Laufer, Y. Mishina, T. A. Mitsiadis and Y. Saga for reagents, T. Gridley for sharing unpublished results, and R. Behringer and C. Tabin for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evrard, Y., Lun, Y., Aulehla, A. et al. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998). https://doi.org/10.1038/28632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28632

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing