Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intramolecular photochemical electron transfer in a linked porphyrin–quinone molecule as a model for the primary step of photosynthesis

Abstract

The primary photochemical process in algal and green-plant photosynthesis is a one-electron transfer reaction from a chlorophyll donor species to an electron-acceptor molecule, with the electron transfer taking place across the thylakoid membrane probably within a special reaction-centre protein1. A similar process takes place in bacterial photosynthesis. We have mimicked this reaction through the synthesis described here using the method of Kong and Loach2, of a single molecule (P–Q) (I) containing a porphyrin (P) linked to a quinone (Q) by a hydrocarbon chain. When illuminated with visible light an intramolecular electron transfer occurs from the porphyrin to the quinone creating the biradical P–Q. which can be detected by electron paramagnetic resonance (EPR) spectroscopy. In certain conditions the electron transfer is reversible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sauer, K. in Bioenergetics of Photosynthesis Chap. 3, 115–180 (ed. Govindjee) (Academic, New York, 1975).

    Book  Google Scholar 

  2. Kong, J. L. Y. & Loach, P. A. in Frontiers of Biological Energetics—Electrons to Tissues, Vol. 1 (eds Dutton, P. L., Leigh, J. S. & Scarpa, A.) 73–82 (Academic, New York, 1978). Abstract No. THPMA12 of the 7th Annual Meeting of the American Society for Photo-biology, Asilomar (1979); J. Het. Chem. (in the press).

    Book  Google Scholar 

  3. Katz, J. J. in Light Induced Charge Separation in Biology and Chemistry (eds Gerischer, H. & Katz, J. J.) 331–359 (Dahlenkonferenzen, Verlag Chemie, Berlin, 1979).

    Google Scholar 

  4. Wasielewski, M. R. in Frontiers of Biological Energetics—Electrons to Tissues Vol. 1 (eds Dutton, P. L., Leigh, J. S. & Scarpa, A.) 63–72 (Academic, New York, 1978).

    Book  Google Scholar 

  5. Pellin, M. J., Kaufmann, K. J. & Wasielewski, M. R. Nature 278, 54–55 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Boxer, S. G. & Bucks, R. R. J. Am. chem. Soc. 101, 1883–1885 (1979).

    Article  CAS  Google Scholar 

  7. Kelly, J. M. & Porter, G. Proc. R. Soc. A319, 319–329 (1979).

    Article  Google Scholar 

  8. Kuhn, H. in Light-Induced Charge Separation in Biology and Chemistry (eds Gerischer, H. & Katz, J. J.) (Dahlenkonferzen, Verlag Chemie, Berlin 1979).

    Google Scholar 

  9. Janzen, A. F., Bolton, J. R. & Stillman, M. J. J. Am. chen Soc. 101, 6337–6341 (1979).

    Article  CAS  Google Scholar 

  10. Janzen, A. F. & Bolton, J. R. J. Am. chem. Soc. 101, 6342–6348 (1979).

    Article  CAS  Google Scholar 

  11. Ford, W. E., Otvos, J. W. & Calvin, M. Proc. natn. Acad. Sci. U.S.A. 76, 3590–3593 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Kurihara, K., Sukigara, M. & Toyoshima, Y. Biochim. biophys. Acta 547, 117–126 (1979).

    Article  CAS  Google Scholar 

  13. Chandross, E. A. & Thomas, H. T. Chem. phys. Lett. 9, 393–396 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Okada, T. et al. Chem. phys. Lett. 14, 563–568 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Ide, R., Sakata, Y. & Misumi, S. JCS Chem. Commun. 1009 (1972).

  16. Gnädig, K. & Eisenthal, K. B. Chem. phys. Lett. 46, 339–342 (1977).

    Article  ADS  Google Scholar 

  17. Mataga, N., Migita, M. & Nishimura, T. J. molec. Struct. 47, 199–219 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Migita, M., Kawai, M., Mataga, N., Sakata, Y. & Misumi, S. Chem. phys. Lett. 53, 67–70 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Tollin, G. Bioenergetics 6, 69–87 (1974); J. phys. Chem. 80, 2274–2277 (1976).

    Article  CAS  Google Scholar 

  20. Tabushi, I., Koga, N. & Yanagita, M. Tetrahedron. Lett. No. 3, 257–260 (1979).

  21. McIntosh, A. R., Manikowski, H. & Bolton, J. R. J. phys. Chem. 83, 3309–3314 (1979).

    Article  CAS  Google Scholar 

  22. Ke, B., Demeter, S., Zamarev, K. I. & Khairutdinov, R. F. Biochim. biophys. Acta 545, 264–284 (1979).

    Google Scholar 

  23. Dalton, J. & Milgrom, L. R. JCS Chem. Commun. 609 (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, TF., McIntosh, A. & Bolton, J. Intramolecular photochemical electron transfer in a linked porphyrin–quinone molecule as a model for the primary step of photosynthesis. Nature 286, 254–256 (1980). https://doi.org/10.1038/286254a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286254a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing