Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photoelectrochemical properties of metalloporphyrins

Abstract

The photovoltaic responses of meso tetraphenyl-, meso tetra-propyl- and octaethyl-porphyrins, porphines, chlorins, cofacial diporphyrins and mesoporphyrin IX diesters were investigated using two cell configurations: Al| Porphyrin |Ag, and Al| Porphyrin | Fe(CN)6−3, Fe(CN)6−4 |Pt. We found (1) that the Al–porphyrin interface is photoactive: the action spectra closely follow the absorption spectra of the porphyrins, and this interface is best described as a semiconductor–insulator–metal diode consisting of porphyrin |A12O3 |Al; (2) that within a homologous series, in which the porphyrin skeleton is fixed but the metal is varied, the quantum yields parallel the ease of oxidation of the porphyrin in nonaqueous solvents. The more easily oxidised compounds exhibit the higher quantum yields; (3) no obvious correlations are found with the luminescent properties of the porphyrins in solution; (4) the morphology of the films influences the quantum yields: amorphous films are better than microcrystalline ones; and (5) the most efficient cells reach quantum yields of 0.2 and energy efficiencies of 1% for monochromatic light at the peak of the action spectrum in the region of 400–450 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Putseiko, E. & Akimov, I. Discuss. Faraday Soc. 27, 83–93 (1959).

    Article  Google Scholar 

  2. McCree, K. Biochim. biophys. Acta 102, 96–102 (1965).

    Article  CAS  Google Scholar 

  3. Fedorov, M. & Benderskii, V. Sov. Phys.-Semicond. 4, 1198–1199, 1720–1722 (1971).

    Google Scholar 

  4. Lyons, L. & Newman, O. Aust. J. Chem. 24, 13–23 (1973).

    Article  Google Scholar 

  5. Ghosh, A. & Feng, T. J. appl. Phys. 44, 2781–2788 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Ghosh, A., Morel, D., Feng, T., Shaw, R. & Rowe, C. J. appl. Phys. 45, 230–236 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Bromberg, A., Tang, C. & Albrecht, A. J. chem. Phys. 60, 4058–4062 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Tang, C. & Albrecht, A. Nature 254, 507–509 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Tang, C. & Albrecht, A. J. chem. Phys. 62, 2139–2149 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Tang, C. & Albrecht, A. J. chem. Phys. 63, 953–967 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Merritt, V. & Hovel, H. Appl. phys. lett. 29, 414–415 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Tsubomura, H., Matsumura, M., Nomura, Y. & Amamiya, T. Nature 261, 402–403 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Corker, G. & Lundstrom, I. J. appl. Phys. 49, 686–700 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Tien, H. Solar Energy 21, 291–295 (1978).

    Article  ADS  Google Scholar 

  15. Wraight, C. & Clayton, R. Biochim. biophys. Acta 333, 246–260 (1973).

    Article  Google Scholar 

  16. Fajer, J., Brune, D., Davis, M., Forman, A. & Spaulding, L. Proc. natn. Acad. Sci. U.S.A. 72, 4956–4960 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Fujita, I., Davis, M. & Fajer, J. J. Am. chem. Soc. 100, 6280–6282 (1978).

    Article  CAS  Google Scholar 

  18. Fan, F.-R. & Faulkner, L. J. chem. Phys. 69, 3334–3340 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Fan, F.-R. & Faulkner, L. J. chem. Phys. 69, 3341–3349 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Kampas, F. & Gouterman, M. J. phys. Chem. 81, 690–695 (1977).

    Article  CAS  Google Scholar 

  21. Wang, J. Proc. natn. Acad. Sci. U.S.A. 62, 653–660 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Green, M., King, F. & Shewchun, J. Solid-St. Electron. 17, 551–561 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Fajer, J. & Davis, M. S. in The Porphyrins (ed. Dolphin, D.) (Academic, New York, 1979). Vol. 4, Ch. 4.

    Google Scholar 

  24. Gouterman, M. in The Porphyrins Vol. 3, Ch. 1 (ed. Dolphin D.) (Academic, New York, 1978).

    Google Scholar 

  25. Chang, C. K. J. Heterocyclic Chem. 14, 1285 (1977); Adv. Chem. Ser. 173, 162 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampas, F., Yamashita, K. & Fajer, J. Photoelectrochemical properties of metalloporphyrins. Nature 284, 40–42 (1980). https://doi.org/10.1038/284040a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284040a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing