Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Histone H5 messenger RNA is polyadenylated

Abstract

In most known systems1,2, histone mRNA lacks the poly(A) sequence at the 3′ end of the molecule typical of most mRNAs. Furthermore, the synthesis of histones, unlike that of most proteins, is tightly coupled to DNA synthesis3–5. Nevertheless, histone synthesis occurs in amphibian oocytes in the absence of DNA synthesis6. Moreover, it has recently been found that in amphibian oocytes most of the histone mRNA is polyadenylated7–9, and the polyadenylate is probably removed during maturation of the oocyte10. Histone H5, an H1-like tissue-specific histone occurring only in nucleated erythrocytes11, is also atypical in that it is synthesised in the absence of DNA synthesis during maturation of the red blood cells12,13. We report here that H5 mRNA is polyadenylated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adesnik, M. & Darnell, J. E. J. molec. Biol. 67, 397–406 (1972).

    Article  CAS  Google Scholar 

  2. Grunstein, M., Levy, S., Schedl, P. & Kedes, L. Cold Spring Harb. Sym. quant. Biol. 38, 717–724 (1973).

    Article  Google Scholar 

  3. Borum, T. W., Scharff, M. D. & Robbins, E. Proc. nat. Acad. Sci. U.S.A. 58, 1977–1983 (1967).

    Article  ADS  Google Scholar 

  4. Perry, R. P. & Kelly, D. E. J. molec. Biol. 799, 681–696 (1973).

    Article  Google Scholar 

  5. Stahl, H. & Gallwitz, D. Eur. J. Biochem. 72, 385–392 (1977).

    Article  CAS  Google Scholar 

  6. Adamson, F. D. & Woodland, H. R. J. molec. Biol. 88, 263–285 (1974).

    Article  CAS  Google Scholar 

  7. Levenson, R. G. & Marcu, K. B. Cell 9, 311–322 (1976).

    Article  CAS  Google Scholar 

  8. Ruderman, J. V. & Pardue, M. L. Devl Biol. 60, 48–68 (1977).

    Article  CAS  Google Scholar 

  9. Ruderman, J. V. & Pardue, M. L. J. biol. Chem. 253, 2018–2025 (1978).

    CAS  PubMed  Google Scholar 

  10. Ruderman, J. V., Woodland, H. R. & Sturgess, E. A. Devl Biol. 71, 71–82 (1979).

    Article  CAS  Google Scholar 

  11. Neelin, J. M., Callahan, P. X., Lamb, D. C. & Murray, K. Can. J. Biochem. 42, 1743–1752 (1964).

    Article  CAS  Google Scholar 

  12. Appels, R. & Wells, J. R. E. J. molec. Biol. 70, 425–434 (1972).

    Article  CAS  Google Scholar 

  13. Ruiz-Carrillo, A., Wangh, L. J. & Allfrey, V. G. Archs Biochem. Biophys. 174, 273–290 (1976).

    Article  CAS  Google Scholar 

  14. Perucho, M., Molgaard, H. V., Pataryas, T., Shevack, A. & Ruiz-Carrillo, A. Analyt. Biochem. 98, 464–471 (1979).

    Article  CAS  Google Scholar 

  15. Groner, B. et al. J. biol. Chem. 252, 6666–6674 (1977).

    CAS  PubMed  Google Scholar 

  16. Scott, A. C. & Wells, J. R. E. Nature 259, 635–638 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Johns, E. W. Biochem. J. 92, 55–59 (1964).

    Article  CAS  Google Scholar 

  18. Crawford, R. J., Scott, A. C. & Wells, J. R. E. Eur. J. Biochem. 72, 291–299 (1977).

    Article  CAS  Google Scholar 

  19. Longacre, S. S. & Rutter, W. J. J. biol. Chem. 252, 2742–2752 (1977).

    CAS  PubMed  Google Scholar 

  20. Brownlee, G. G., Cartwright, E. M., Cowan, N. J., Jarvis, J. M. & Milstein, C. Nature new Biol. 244, 236–239 (1973).

    Article  CAS  Google Scholar 

  21. Perry, R. P., La Torre, J., Kelley, D. E. & Greenberg, J. R. Biochem. biophys. Acta 262, 220–226 (1972).

    CAS  PubMed  Google Scholar 

  22. Adesnik, M., Salditt, M., Thomas, W. & Darnell, J. E. J. molec. Biol. 71, 21–30 (1972).

    Article  CAS  Google Scholar 

  23. Ruiz-Carrillo, A. & Jorcano, J. L. Biochemistry 18, 760–768 (1979).

    Article  CAS  Google Scholar 

  24. Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  Google Scholar 

  25. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  Google Scholar 

  26. Rice, R. H. & Means, G. E. J. biol. Chem. 246, 831–832 (1971).

    CAS  PubMed  Google Scholar 

  27. Pinder, J. C., Staynov, D. Z. & Gratzer, W. B. Biochemistry 13, 5373–5378 (1974).

    Article  CAS  Google Scholar 

  28. Burckhardt, J. & Birnstiel, M. L. J. molec. Biol. 118, 61–79 (1978).

    Article  CAS  Google Scholar 

  29. Bishop, J. O., Rosbash, M. & Evans, D. J. molec. Biol. 85, 75–86 (1974).

    Article  CAS  Google Scholar 

  30. Sautière, P. et al. FEBS Lett. 63, 164–166 (1976).

    Article  Google Scholar 

  31. Scott, A. C. & Wells, J. R. E. Biochem. biophys. Res. Commun. 64, 448–455 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molgaard, H., Perucho, M. & Ruiz-Carrillo, A. Histone H5 messenger RNA is polyadenylated. Nature 283, 502–504 (1980). https://doi.org/10.1038/283502a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283502a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing