Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amino acids evoke short-latency membrane conductance increase in pancreatic acinar cells

Abstract

Sodium-gradient-driven amino acid transport is regarded as an important mechanism for cellular uptake in general as well as in pancreatic acini1–6. Electrophysiological experiments in kidney tubules and intestine have revealed that amino acids can cause sodium-dependent membrane depolarisation7–11. The mechanism of this depolarisation is unknown10 as it is uncertain whether the depolarisation is accompanied by a membrane conductance increase9,11. The pancreatic acinar tissue would seem to be an ideal system for investigating the electrophysiological mechanism of action of amino acids because (1) the pancreas is the most active amino acid-accumulating tissue12, (2) the basic electrophysiology of the pancreatic acinar cells is well characterised13 and (3) a direct comparison can be made in the same cells between the electrical actions of the pancreatic secretagogues and the amino acids. We now show that L-alanine evokes a stereospecific membrane depolarisation accompanied by an increase in membrane conductance and that this membrane effect has a much shorter latency than the secretagogue response. The null (equilibrium) potential for the amino acid-evoked potential change corresponds to the sodium equilibrium potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crane, R. K. Rev. Physiol. Biochem. Pharmac. 78, 99–159 (1977).

    Article  CAS  Google Scholar 

  2. Heinz, E., Geck, P. & Pietrzyk, C. Ann. N.Y. Acad. Sci. 264, 428–441 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Heinz, E., Geck, P., Pietrzyk, C. & Burchkar, G. J. supramolec. Struct. 6, 125–133 (1977).

    Article  CAS  Google Scholar 

  4. Philo, R. D. & Eddy, A. A. Biochem. J. 174, 811–817 (1978).

    Article  CAS  Google Scholar 

  5. Villereal, M. L. & Cook, J. S. J. biol. Chem. 253, 8257–8262 (1978).

    CAS  PubMed  Google Scholar 

  6. Tyrakowski, T., Milutinovic, S. & Schulz, I. J. Membrane Biol. 38, 333–346 (1978).

    Article  CAS  Google Scholar 

  7. Armstrong, W. McD. & White, J. F. in Electrophysiology of Epithelial Cells (ed. Giebisch, G.) 285–312 (Schathauer, Stuttgart, 1971).

    Google Scholar 

  8. Rose, R. C. & Schultz, S. G. J. gen. Physiol. 57, 639–663 (1971).

    Article  CAS  Google Scholar 

  9. Hoshi, T. & Kikuta, Y. in Electrophysiology of the Nephron (ed. Agnostopoulus, T.) 135–150 (INSERM, Paris, 1977).

    Google Scholar 

  10. Okada, Y., Tsuchiya, W., Irimajiri, A. & Inouye, A. J. Membrane Biol. 31, 205–219 (1977).

    Article  CAS  Google Scholar 

  11. Frömter, E. J. Physiol., Lond. 288, 1–31 (1979).

    PubMed  Google Scholar 

  12. Schulz, I. & Ullrich, K. J. in Membrane Transport in Biology Vol. IV (eds Giebisch, G., Tosteson, D. C. & Ussing, H. H.) 811–852 (Springer, Berlin, 1978).

    Google Scholar 

  13. Petersen, O. H. Physiol. Rev. 56, 535–577 (1976).

    Article  CAS  Google Scholar 

  14. Iwatsuki, N. & Petersen, O. H. J. Physiol., Lond. 269, 735–751 (1977).

    Article  CAS  Google Scholar 

  15. Iwatsuki, N. & Petersen, O. H. J. Cell Biol. 79, 533–545 (1978).

    Article  CAS  Google Scholar 

  16. Petersen, O. H. & Philpott, H. G. J. Physiol., Lond. 290, 305–315 (1979).

    Article  CAS  Google Scholar 

  17. Nishiyama, A. & Petersen, O. H. J. Physiol. Lond. 244, 431–465 (1975).

    Article  CAS  Google Scholar 

  18. Purves, R. D. Nature 261, 149–151 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Iwatsuki, N. & Petersen, O. H. Nature 268, 147–149 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Williams, J. A. Am. J. Physiol. 229, 1023–1026 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwatsuki, N., Petersen, O. Amino acids evoke short-latency membrane conductance increase in pancreatic acinar cells. Nature 283, 492–494 (1980). https://doi.org/10.1038/283492a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283492a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing