Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon disulphide and carbonyl sulphide from biogenic sources and their contributions to the global sulphur cycle

Abstract

Estimates of the magnitude of biogenic sulphur emissions range from 70% of the total atmospheric sulphur burden1–7, and the chemical nature of the emissions has not been clearly established. Conway1 speculated that the principal volatile biogenic component of the sulphur cycle was hydrogen sulphide (H2S) whereas Lovelock et al.8 and Rasmussen9 have suggested that dimethyl sulphide (DMS) contributes to the apparent source deficits. Aneja et al.10 have shown that both H2S and DMS are emitted from saltmarshes. Other volatile sulphur compounds which may contribute to the sulphur burden of the atmosphere include methyl mercaptan (CH3SH)11,12, dimethyl disulphide ((CH3)2S2)11,12, carbonyl sulphide (COS)13 and carbon disulphide (CS2)14,15. We report here the discovery of CS2 and COS emanating from a saltmarsh and estimate their emission rates using emission flux reactor and bag chamber techniques. The species CS2 and COS are relatively inert in the troposphere, so may be assumed to penetrate to the stratosphere, where they may be photolysed to form the sulphur dioxide (SO2) and sulphates (SO42−) known to be present in the stratosphere. Based on the measured fluxes, we show that the emissions from marshes are important to the sulphate aerosol burden (19%) of the stratosphere, but not important for the tropospheric sulphur burden (0.2%).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Conway, E. J. Proc. R. Ir. Acad. A 48, 119–159 (1943).

    Google Scholar 

  2. Eriksson, E. J. geophys. Res. 68, 4001–4008 (1963).

    Article  ADS  Google Scholar 

  3. Junge, C. E. Air Chemistry and Radioactivity (Academic, New York, 1963).

    Google Scholar 

  4. Robinson, E. & Robbins, R. C. Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants: SRI Project Report PR-6755 (American Petroleum Institute, New York, 1968).

    Google Scholar 

  5. Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L. & Martell, E. A. Sciences 175, 587–596 (1972).

    Article  CAS  Google Scholar 

  6. Friend, J. P. in Chemistry of the Lower Atmosphere (ed. Rasool, S. I.) 177–201 (Plenum, New York, 1973).

    Book  Google Scholar 

  7. Granat, L., Hallberg, R. O. & Rodhe, H. Ecol. Bull (Stockholm) 22, 39–134 (1976).

    Google Scholar 

  8. Lovelock, J. E., Maggs, R. J. & Rasmussen, R. A. Nature 237, 452–3 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Rasmussen, R. A. Tellus 26, 254–260 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Aneja, V. P., Overton, J. H. Jr, Cupitt, L. T., Durham, J. L. & Wilson, W. E. Tellus 31, 174–178 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Aneja, V. P. thesis North Carolina State Univ. Raleigh (1975).

  12. Hill, F. B., Aneja, V. P. & Felder, R. M. Envir. Sci. Hlth 13, 199–225 (1978).

    Google Scholar 

  13. Hanst, P. L., Spiller, L. L., Watts, D. M., Spence, J. W. & Miller, M. F. J. Air Pollut. Control Ass. 25, 1220–1226 (1975).

    Article  CAS  Google Scholar 

  14. Sandalls, F. J. & Penkett, S. A. Atmos. Envir. 11, 197–199 (1977).

    Article  CAS  Google Scholar 

  15. Lovelock, J. E. Nature 248, 625–626 (1974).

    CAS  Google Scholar 

  16. Crutzen, P. J. Geophys. Res. Lett. 3, 73–76 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Stevens, R. K., Mulik, J. D., O'Keefe, A. E. & Krost, K. J. Analyt. Chem. 43, 827 (1971).

    Article  CAS  Google Scholar 

  18. Zimmerman, P. R. Testing of Hydrocarbon Emissions from Vegetation and Development of a Methodology for Estimating Emission Rates from Foliage (EPA Contract No. DU-77-C063, Research Triangle Park, 1978).

  19. Seneca, E. D., Stroud, L. M., Blum, U. & Noggle, G. K. An Analysis of the Effects of the Brunswick Nuclear Power Plant on the Productivity of Spartina alterniflora (Smooth Cordgrass) in the Dutchman Creek, Oak Island, Snow's Marsh, and Waiden Creek Marshes, Brunswick County, North Carolina, 1975-1976 (Third Annual Report to Carolina Power and Light Company, Raleigh, 1976).

  20. Woodwell, G. M., Rich, P. M. & Hall, C. A. S. A.E.C. Symp. Ser. 30, 221–240 (1973).

    CAS  Google Scholar 

  21. Junge, C. Proc. int. Conf. of Structure, Composition and General Circulation of the Upper and Lower Atmospheres and Possible Anthropogenic Perturbations (Melbourne, 1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aneja, V., Overton, J., Cupitt, L. et al. Carbon disulphide and carbonyl sulphide from biogenic sources and their contributions to the global sulphur cycle. Nature 282, 493–496 (1979). https://doi.org/10.1038/282493a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282493a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing