Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Poly(A) polymerase and poly(A)-specific mRNA binding protein are antigenically related

Abstract

THE polysomal mRNA of eukaryotes is associated with at least two tightly binding proteins of approximate molecular weights 75,000 and 60,0001–5. The 75,000 MW polypeptide (P75) is specifically bound to the poly(A) portion of the mRNA2,6,7. Heterogeneous nuclear RNA molecules (HnRNAs), which apparently contain the precursors to the cytoplasmic mRNAs, are also associated with several polypeptides5,8. Although the array of proteins bound to HnRNAs is more complex than that bound to mRNAs, one major protein of MW 75,000 is associated with the poly(A) tracts in the HnRNA8. It has been postulated that the nuclear P75 is identical to the cytoplasmic polypeptide of the same size8. It has also been suggested that P75 is responsible for the transport of poly(A)-containing mRNAs from nucleus to cytoplasm9. However, direct evidence for the function of P75 has been lacking. While characterising poly(A) polymerase (EC 2.7.7.19), the enzyme responsible for the post-transcriptional addition of poly(A) to the 3′ terminus of the mRNA, we observed several similarities with P75. In particular, both occur in the nucleus in soluble and bound states10–12, can be isolated from polysomes2,5,13,14 or post-microsomal cytoplasm13–18, have almost identical amino acid compositions13,19, and have similar MWs of 75,000 and 60,000 (refs 19, 20), respectively. Unfortunately, the conditions required for P75 purification have precluded determination of any associated enzyme activity. We have circumvented this difficulty by raising antibody to poly(A) polymerase, and developing a sensitive and specific radioimmunoassay for this enzyme. We now report that P75 can form complexes with antibodies to poly (A) polymerase and can compete with this protein in the radioimmunoassay. These data suggest that the two polypeptides are structurally similar and, possibly, identical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blobel, G. Biochem. biophys. Res. Commun. 47, 88–95 (1972).

    Article  CAS  Google Scholar 

  2. Blobel, G. Proc. natn. Acad. Sci. U.S.A. 70, 924–928 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Bryan, R. N. & Hayashi, M. Nature new Biol. 244, 271–274 (1973).

    Article  CAS  Google Scholar 

  4. Morel, C., Gander, E. S., Herzberg, M., Dubochet, J. & Scherrer, K. Eur. J. Biochem. 36, 455–464.

  5. Kumar, A. & Pederson, T. J. molec. Biol. 96, 353–365 (1975).

    Article  CAS  Google Scholar 

  6. Kwan, W. S. & Brawerman, G. Proc. natn. Acad. Sci. U.S.A. 69, 3247–3250 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Lindberg, U. & Sundquist, B. J. molec. Biol. 86, 451–468 (1974).

    Article  CAS  Google Scholar 

  8. Kish, V. M. & Pederson, T. J. molec. Biol. 95, 227–238 (1975).

    Article  CAS  Google Scholar 

  9. Schwartz, H. & Darnell, J. E. J. molec. Biol. 104, 833–851 (1976).

    Article  CAS  Google Scholar 

  10. Jacob, S. T., Roe, F. J. & Rose, K. M. Biochem. J. 153, 733–735 (1976).

    Article  CAS  Google Scholar 

  11. Rose, K. M., Roe, F. J. & Jacob, S. T. Biochim. biophys. Acta 478, 180–191 (1977).

    Article  CAS  Google Scholar 

  12. Schweiger, A. & Mazur, G. FEBS Lett. 60, 114–117 (1975).

    Article  CAS  Google Scholar 

  13. Mazur, G. & Schweiger, A. Biochem. biophys. Res. Commun. 80, 39–45 (1978).

    Article  CAS  Google Scholar 

  14. Wilkie, N. M. & Smellie, R. M. S. Biochem. J. 109, 485–495 (1968).

    Article  CAS  Google Scholar 

  15. Klemperer, H. G. Biochim. biophys. Acta 72, 416–420 (1963).

    Article  CAS  Google Scholar 

  16. Tsiapalis, C. M., Dorson, J. W. & Bollum, F. J. J. biol. Chem. 250, 4486–4496 (1975).

    CAS  PubMed  Google Scholar 

  17. Rose, K. M., Lin, Y.-Ch. & Jacob, S. T. FEBS Lett. 67, 193–197 (1976).

    Article  CAS  Google Scholar 

  18. Fukami, H. & Itano, H. A. Biochemistry 15, 3529–3535 (1976).

    Article  CAS  Google Scholar 

  19. Rose, K. M. & Jacob, S. T. Eur. J. Biochem. 67, 11–21 (1976).

    Article  CAS  Google Scholar 

  20. Jacob, S. T. & Rose, K. M. Meth. Cancer Res. 14, 191–241 (1978).

    CAS  Google Scholar 

  21. Darnell, J. E., Jelinek, W. R. & Molloy, G. R. Science 181, 1215–1221 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Rose, K. M., Bell, L. E. & Jacob, S. T. Nature 267, 178–180 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Brawerman, G. Prog. Nucleic Acids Res. 17, 117–148 (1976).

    Article  CAS  Google Scholar 

  24. Sheiness, D., Puckett, L. & Darnell, J. E. Proc. natn. Acad. Sci. U.S.A. 72, 1077–1081 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Diez, J. & Brawerman, G. Proc. natn. Acad. Sci. U.S.A. 71, 4091–4095 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Nevins, J. R. & Joklik, W. K. J. biol. Chem. 252, 6939–6947 (1977).

    CAS  PubMed  Google Scholar 

  27. Shelton, K. R. & Cochran, R. L. Biochemistry 17, 1212–1216 (1978).

    Article  CAS  Google Scholar 

  28. Shelton, K. R. Biochem. biophys. Res. Commun. 83, 1333–1338 (1978).

    Article  CAS  Google Scholar 

  29. Levy, G. et al. Nature 256, 340–341 (1975).

    Article  ADS  CAS  Google Scholar 

  30. Marbaix, G. et al. Proc. natn. Acad. Sci. U.S.A. 72, 3065–3067 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Huez, G. et al. Nature 271, 572–573 (1978).

    Article  ADS  CAS  Google Scholar 

  32. Jacob, S. T., Jänne, O. & Rose, K. M. in Regulation of Growth and Differentiated Function in Eukaryote Cells (ed. Talwar, G. P.) 369–378 (Raven, New York, 1975).

    Google Scholar 

  33. Jacob, S. T., Rose, K. M. & Munro, H. N. Biochem. J. 158, 161–167 (1976).

    Article  CAS  Google Scholar 

  34. Rose, K. M., Allen, M. S., Crawford, I. L. & Jacob, S. T. Eur. J. Biochem. 88, 29–36 (1978).

    Article  CAS  Google Scholar 

  35. Greenwood, F. C., Hunter, W. M. & Clover, J. S. Proc. natn. Acad. Sci. U.S.A. 70, 230–234 (1963).

    Google Scholar 

  36. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  37. Bennett, T. P. Nature 213, 1131–1132 (1967).

    Article  ADS  CAS  Google Scholar 

  38. Schaffner, W. & Weissman, C. Analyt. Biochem. 56, 502–514 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ROSE, K., JACOB, S. & KUMAR, A. Poly(A) polymerase and poly(A)-specific mRNA binding protein are antigenically related. Nature 279, 260–262 (1979). https://doi.org/10.1038/279260a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279260a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing