Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heavy-element enrichment in low-density regions of the intergalactic medium

Abstract

Models for the composition of the diffuse intergalactic medium1,2 predict that low-density intergalactic gas at high redshift should be very poor in heavy elements. This is because locations of early star formation (and thus of heavy-element synthesis) and of gas delivery from such stars are located preferentially within higher-density regions of the intergalactic gas. Here we present a method for analysing carbon and oxygen absorption lines in quasar spectra that allows us to probe the heavy-element abundances at a redshift of three within low-density regions of intergalactic gas. We find that the ratio of triply ionized carbon to neutral hydrogen is roughly constant over a wide range of densities, and that, even as the density approaches zero, the ratio remains high. This unexpected enrichment of low-density gas in heavy elements suggests that early generations of small galaxies might be much more efficient at ejecting heavy elements into the intergalactic medium than has previously been thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: The median τ(C IV) in 1,500-element bins (crosses) as a function of τ(Lyα).
Figure 1: Plots showing the difference between the observed distribution of τ(C IV) computed in three ranges of τ(Lyα), that is [0.5,2], [2.5] and [5,20], and the normalized distribution of τ(C IV) computed for τ(Lyα) < 0.1.

Similar content being viewed by others

References

  1. Gnedin, N. Y. Metal enrichment of the intergalactic medium. Mon. Not. R. Astron. Soc. 294, 407–421 (1998).

    Article  ADS  Google Scholar 

  2. Gnedin, N. Y. & Ostriker, J. P. Reionization of the universe and the early production of metals. Astrophys. J. 486, 581–598 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Cen, R., Miralda-Escudé, J., Ostriker, J. P. & Rauch, M. Gravitational collapse of small-scale structure as the origin of the Lyman-alpha forest. Astrophys. J. 437, L9–L12 (1994).

    Article  ADS  Google Scholar 

  4. Petitjean, P., Mücket, J. P. & Kates, R. E. The Lyα forest at low redshift: tracing the dark matter filaments. Astron. Astrophys. 295, L9–L12 (1995).

    ADS  Google Scholar 

  5. Zhang, Y., Anninos, P. & Norman, M. L. Amultispecies model for hydrogen and helium absorbers in Lyman-alpha forest clouds. Astrophys. J. 453, L57–L60 (1995).

    Article  ADS  Google Scholar 

  6. Hernquist, L., Katz, N., Weinberg, D. H. & Miralda-Escudé, J. The Lyman-alpha forest in the cold dark matter model. Astrophys. J. 457, L51–L56 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Miralda-Escudé, J., Cen, R., Ostriker, J. P. & Rauch, M. The Ly alpha forest from gravitaitonal collapse in the cold dark matter + lambda model. Astrophys. J. 471, 582–616 (1996).

    Article  ADS  Google Scholar 

  8. Cowie, L. L., Songaila, A., Kim, T.-S. & Hu, E. M. The metallicity and internal structure of the Lyman alpha forest clouds. Astron. J. 109, 1522–1530 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Songaila, A. & Cowie, L. L. Metal enrichment and ionization balance in the Lyman alpha forest at z3. Astron. J. 112, 335–351 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Bi, H. G. & Davidsen, A. Evolution of structure in the intergalactic medium and the nature of the Ly alpha forest. Astrophys. J. 479, 523–542 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Davé, R., Hernquist, L., Weinberg, D. H. & Katz, W. Voigt-profile analysis of the Ly alpha forest in a cold dark matter universe. Astrophys. J. 477, 21–26 (1997).

    Article  ADS  Google Scholar 

  12. Croft, R. A. C., Weinberg, D. H., Katz, N. & Hernquist, L. Intergalactic helium absorption in cold dark matter models. Astrophys. J. 488, 532–549 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Hui, L. & Gnedin, N. Y. Equation of state of the photoionized intergalactic medium. Mon. Not. R. Astron. Soc. 292, 27–42 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Meyer, D. & York, D. G. Observations of weak C IV absorption toward the QSOs 2000-330 and 2126-158. Astrophys. J. 315, L5–L9 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Rauch, M., Haehnelt, M. G. & Steinmetz, M. QSO metal absorption systems at high redshift and the signature of hierarchical galaxy formation. Astrophys. J. 481, 601–624 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Petitjean, P. in Science with the VLT (eds Danziger, J. & Walsh, J.) 339 (Springer, Heidelberg, 1995).

    Book  Google Scholar 

  17. Norris, J., Peterson, B. A. & Hartwick, F. D. A. The oxygen abundance in the clouds producing the Ly-alpha-Ly-beta absorption systems in the quasars 4C 5.34 (0.804+046) and OQ 172 (1442+101). Astrophys. J. 273, 450–457 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Lu, L. The carbon abundance of the Lyman-alpha clouds. Astrophys. J. 379, 99–106 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Tytler, D. & Fan, X-M. Upper limits on metals in quasar Lyman-slpha forest clouds: Absence of C IV lines in echelle spectra. Astrophys. J. 424, L87–L90 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Hu, E. M., Kim, T.-S., Cowie, L. L. & Songaila, A. The distribution of column densities and b-values in the Lyman-alpha forest. Astron. J. 110, 1526–1543 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Songalila, A. The redshift evolution of the metagalactic ionizing flux inferred from metal line ratios in the Lyman forest. Astron. J. (in the press).

  22. Lu, L., Sargent, W. L. W., Barlow, T. A. & Rauch, M. The metal contents of very low column density Lyman-alpha clouds: implications for the origin of heavy elements in the intergalactic medium. Preprint astro-ph/9802189.

  23. Hellstein, U., Davé, R., Hernquist, L., Weinberg, D. H. & Katz, N. Metal lines associated with Ly alpha absorbers: A comparison of theory and observations. Astrophys. J. 487, 482–488 (1997).

    Article  ADS  Google Scholar 

  24. Giroux, M. L. & Shull, J. M. The influence of the photoionizing radiation spectrum on metal-line ratios in Ly (alpha) forest clouds. Astron. J. 113, 1505–1513 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Haardt, F. & Madau, P. Radiative transfer in a clumpy universe. II. The ultraviolet extragalactic background. Astrophys. J. 461, 20–37 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Songaila, A. Alower limit to the universal density of metals at z 3. Astrophys. J. 490, L1–L4 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Haiman, Z. & Loeb, A. Signatures of stellar reionization of the universe. Astrophys. J. 483, 21–37 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Miralda-Escudé, J. & Rees, M. J. High-redshift supernovae and the metal-poor halo stars: Signatures of the first generation of galaxies. Astrophys. J. 478, L57–L61 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the many people at the Keck telescopes who assisted with these observations, particularly S. Vogt whose HIRES spectrograph made the observations possible. L.L.C. and A.S. are visiting astronomers at the W. M. Keck Observatory, jointly operated by the California Institute of Technology and the University of California. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennox L. Cowie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowie, L., Songaila, A. Heavy-element enrichment in low-density regions of the intergalactic medium. Nature 394, 44–46 (1998). https://doi.org/10.1038/27845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27845

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing