Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calibration of Grenvillian palaeopoles by 40Ar/39Ar dating

Abstract

PALAEOPOLES from the exposed Grenville Province of the Canadian Shield are displaced from those of the remaining shield. It has been proposed that these poles record either a Precambrian plate collision 1,000 Myr (refs 1–3) or manifest a large rotation and translation of the entire extant North American crust4–6. Geological evidence in support of the collisional hypothesis is largely lacking; for example, an acceptable suture zone has not been located. The critical evidence for a choice between the two-plate and one-plate tectonic hypotheses must, therefore, come from dating these palaeopoles because if the magnetisations were acquired contemporaneously with those of the Logan Loop (1,000–1,200 Myr), then the two-plate or collisional hypothesis is probably correct. We present here an empirically derived cooling curve for the Haliburton basic intrusions within the Grenville Province. These intrusions are located in a region of high-grade metamorphism, upper amphibolite to granulite facies. Their emplacement times are not known, but in the Haliburton Highlands cooling from the culmination of regional metamorphism, not contemporaneous throughout the Grenville Province, began 1,050 Myr ago7. This is the first cooling curve for an orogen to be derived solely from isotopic data; that is, the first for which both temperature and time have been determined from the same samples. Using this as a calibration curve, we show here that the thermal remanent magnetisation (TRM) components from the Haliburton basic intrusions were acquired between 980 and 820 Myr ago during slow cooling and that, consequently, the two-plate hypothesis is improbable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Irving, E., Emslie, R. F. & Ueno, H. J. geophys. Res. 79, 5491–5502 (1974).

    Article  ADS  Google Scholar 

  2. Ueno, H., Irving, E. & McNutt, R. H. Can. J. Earth Sci. 12, 209–226 (1975).

    Article  ADS  Google Scholar 

  3. Buchan, K. L. & Dunlop, D. J. J. geophys. Res. 81, 2951–2967 (1976).

    Article  ADS  Google Scholar 

  4. Fahrig, W. F., Christie, K. W. & Schwarz, E. J. Can. J. Earth Sci. 11, 18–29 (1974).

    Article  ADS  Google Scholar 

  5. Stewart, A. D. & Irving, E. Geophys. J. R. astr. Soc. 37, 51–72 (1974).

    Article  ADS  Google Scholar 

  6. McWilliams, M. O. & Dunlop, D. J. Science 190, 269–272 (1975).

    Article  ADS  Google Scholar 

  7. Macintyre, R. M., York, D. & Moorhouse, W. W. Can. J. Earth Sci. 4, 815–828 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Buchan, K. L., Berger, G. W., McWilliams, M. O., York, D. & Dunlop, D. J. J. Geomag. Geoelectr. 29, 401–410 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Dodson, M. H. Contr. Miner. Petrol. 40, 259–274 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Fechtig, H. & Kalbitzer, S. in Potassium–Argon Dating (eds Schaeffer, O. A. & Zahringer, J.) 68–107 (Springer, New York, 1966).

    Book  Google Scholar 

  11. Pullaiah, G., Irving, E., Buchan, K. L. & Dunlop, D. J. Earth planet. Sci. Lett. 28, 133–143 (1975).

    Article  ADS  Google Scholar 

  12. Dunlop, D. J. & Hale, C. J. Can. J. Earth Sci. 14, 716–744 (1977).

    Article  ADS  Google Scholar 

  13. York, D. Earth planet. Sci. Lett. 39, 89–93 (1978).

    Article  ADS  CAS  Google Scholar 

  14. York, D. Earth planet. Sci. Lett. 39, 94–97 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Berger, G. W. Earth planet. Sci. Lett. 26, 387–408 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Steiger, R. H. & Jäger, E. Earth planet. Sci. Lett. 36, 359–362 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Buchan, K. L. Can. J. Earth Sci. 15, 1407–1421 (1978).

    Article  ADS  Google Scholar 

  18. Chesworth, W. Lithos 4, 219–229 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Morris, W. A. & Roy, J. L. Nature 266, 689–692 (1977).

    Article  ADS  Google Scholar 

  20. Roy, J. L. & Robertson, W. A. J. geophys. Res. 83, 1289–1304 (1978).

    Article  ADS  Google Scholar 

  21. Irving, E. & McGlynn, J. C. Phil. Trans. R. Soc. A 280, 433–469 (1976).

    Article  ADS  Google Scholar 

  22. McWilhams, M. O. & Dunlop, D. J. Can. J. Earth Sci. 15, 687–695 (1978).

    Article  ADS  Google Scholar 

  23. Reynolds, P. H. Prog. Abst. 5th Ann. Meet. Can. Geophys. Un. Ontario, 41 (1978).

  24. Dallmeyer, R. D. Can. J. Earth Sci. 15, 1374–1379 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Dallmeyer, R. D. & Sutter, J. F. J. geophys. Res. (in the press).

  26. Moorbath, S. Earth Sci. Rev. 3, 111–133 (1967).

    Article  ADS  CAS  Google Scholar 

  27. Henry, S. G., Mauk, F. J. & Van der Voo, R. Can. J. Earth Sci. 14, 1128–1138 (1977).

    Article  ADS  Google Scholar 

  28. Hayatsu, A. & Palmer, H. C. Earth planet. Sci. Lett. 25, 208–212 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Van der Voo, R. EOS Trans. Am. Geophys. Un. 59, 263 (1978).

    Google Scholar 

  30. Chaudhuri, S. Contr. Miner. Petrol. 59, 161–170 (1976).

    Article  ADS  CAS  Google Scholar 

  31. Perry, E. A. & Turekian, K. K. Geochim. cosmochim. Acta 38, 929–935 (1974).

    Article  ADS  CAS  Google Scholar 

  32. Dewey, J. F. & Burke, K. C. A. J. Geol. 81, 683–692 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BERGER, G., YORK, D. & DUNLOP, D. Calibration of Grenvillian palaeopoles by 40Ar/39Ar dating. Nature 277, 46–48 (1979). https://doi.org/10.1038/277046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277046a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing