Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of fixed nitrogen from soils by nitric oxide exhalation

Abstract

LABORATORY studies1–8 have indicated that chemical de-nitrification processes in nitrogen rich soils and nitrite solutions can produce NO or NO2 and perhaps methyl nitrite9. It has been suggested1–6 that self decomposition of nitrite produces various gaseous nitrogen compounds including nitric oxide (NO) and it was thought that NO was unlikely to escape from the soil because in aerobic soils NO is readily oxidised by molecular oxygen to NO2 and this in turn is rapidly adsorbed by soil materials and by soil water1,2. However the half life of oxidation is dependent on the NO concentration because it is a termolecular reaction10,11. At concentrations of 100 p.p.m. or greater (as in some studies) the half life for oxidation of NO to NO2 by atmospheric oxygen is one hour or less respectively, whereas at low concentrations (0.01 p.p.m.) the half life for this oxidation is of the order of 104 h. This variation in the oxidation rate by molecular oxygen explains why NO at low concentrations in the field can pass unoxidised from the soil to the atmosphere and perhaps explains why in some of the laboratory studies (at high concentrations) NO2 and not NO is detected. This NO exhalation in the field could not be detected previously due to the lack of a sufficiently sensitive measurement technique. We report here the first measurements indicating that NO is continuously exhaled from soils including ungrazed, unfertilised grassland. The measured rates of exhalation from the soil to the atmosphere are 0.06 to 0.73 × 10−11 kg nitrogen m−2 s−1 (equivalent to 0.2 to 2.3 kg N ha−1 yr−1). We show that this exhalation of NO is a significant source of nitrogen oxides (NOx) in the lower atmosphere as has been previously suggested12,13. These nitrogen oxides exert a direct influence on the ambient ozone and hydroxyl radical concentrations14 which in turn predominantly determine the oxidation rate of almost all substances in the troposphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broadbent, F. E. & Clark, F. Soil Nitrogen Ch. 9, 344–359 (eds Bartholomew, W. V. & Clark, F. E.) Agronomy Monogr. No. 10 (Am. Soc. Agronomy, Madison, 1965).

    Google Scholar 

  2. Allison, F. E. Soil Nitrogen Ch. 16, 573–606 (eds Bartholomew, W. V. & Clark, F. E.) Agronomy Monogr. No. 10 (Am. Soc. Agronomy, Madison, 1965).

    Google Scholar 

  3. Nelson, D. W. & Bremner, J. M. Soil Biol. Biochem. 2, 203 (1970).

    Article  CAS  Google Scholar 

  4. Bulla, L. A., Gilmour, C. M. & Bollen, W. B. Nature 225, 664 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Nömmik, N. & Thorin, J. Agrochimica 16, 319 (1972).

    Google Scholar 

  6. Van Cleemput, O., Patrick, W. H. & McIlhenny, R. C. J. Soil Sci. Soc. Am. 40, 55 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Moraghan, J. T. & Buresh, R. J. J. Soil Sci. Soc. Am. 41, 47 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Steen, W. C. & Stojanovic, B. J. Proc. Soil Sci. Soc. Am. 35, 277 (1971).

    Article  ADS  CAS  Google Scholar 

  9. Stevenson, F. J. & Swaby, R. J. Proc. Soil Sci. Soc. Am. 28, 773 (1964).

    Article  ADS  CAS  Google Scholar 

  10. Leighton, P. A. Photochemistry of Air Pollution (Academic, New York, 1961).

    Google Scholar 

  11. Demerjian, K. L., Kerr, J. A. & Calvert, J. G. Adv. environ. Sci. Technol. 4, 1–262 (1974).

    CAS  Google Scholar 

  12. Junge, C. E. Int. Geophys. Ser. 4, Air Chemistry and Radioactivity (Academic, New York, 1963).

    Google Scholar 

  13. Galbally, I. E. Tellus 27, 67 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Fishman, J. & Crutzen, P. J. J. geophys. Res. 82, 5897 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Regener, V. H. & Aldaz, L. J. geophys. Res. 74, 6935 (1969).

    Article  ADS  Google Scholar 

  16. Galbally, I. E. Air Pollution Measurement Techniques. Special Environmental Report No.10, 179 (World Meteorological Organisation, Geneva, 1977).

  17. Winer, A. M., Peters, J. W., Smith, J. P. & Pitts, J. N. Environ. Sci. Technol. 8, 1118 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Fontijn, A., Sabadell, A. J. & Ronco, R. J. Analyt. Chem. 42, 575 (1970).

    Article  CAS  Google Scholar 

  19. Stevens, R. K. & Hodgeson, J. A. Analyt. Chem. 45, 443A (1973).

    Article  Google Scholar 

  20. McIlroy, I. C. & Angus, D. E. CSIRO Div. Meteorol. Phys. Tech. Pap. No. 14 (1963).

  21. Swinbank, W. C. CSIRO Div. Meteorol. Phys. Tech. Pap. No. 2 (1955).

  22. CSIRO Riverina Laboratory, Div. Plant Indust. Annual Report (1968).

  23. Northcote, K. H. Atlas of Australian Soils (CSIRO, Melbourne, 1962).

    Google Scholar 

  24. Kim, C. M. Soil Biol. Biochem. 5, 163 (1973).

    Article  CAS  Google Scholar 

  25. Fed. Regist. 38, 15175 (1973).

  26. Bundy, L. G. & Bremner, J. M. Commun. Soil Sci. Plant Analyt. 4, 179 (1973).

    Article  CAS  Google Scholar 

  27. Söderlund, R. & Svensson, B. H. The Global Nitrogen Cycle (eds Svensson, B. H. & Söderlund, R.)in Nitrogen, Phosphorus and Sulphur—Global Cycles (SCOPE Report 7 Ecol. Bull., Stockholm, 1976).

    Google Scholar 

  28. Parker, B. C., Zeller, E. J., Heiskell, L. E. & Thompson, W. J. Antarctic J. U.S.A. 12, 133 (1977).

    Google Scholar 

  29. Parker, B. C., Heiskell, L. E., Thompson, W. J. & Zeller, E. J. Nature 271, 651 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GALBALLY, I., ROY, C. Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature 275, 734–735 (1978). https://doi.org/10.1038/275734a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275734a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing