Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of guanine nucleotides on striatal dopamine receptors

Abstract

GUANINE NUCLEOTIDES have been shown to regulate the sensitivity of adenylate cyclase to hormones in several systems1–5, including the dopamine-sensitive adenylate cyclase in the caudate nucleus2,4. It has also been reported that in the presence of GTP the affinities of glucagon receptors6, β-adrenergic receptors7,8, prostaglandin E1 receptors9 and opiate receptors10 for agonists are decreased. For β-adrenergic receptors this effect of GTP has been described as ‘agonist-specific’, as it is seen with agonists but not with antagonists7,8. We report here a similar effect of GTP on the ability of dopamine-receptor agonists to compete for 3H-spiroperidol binding sites on rat striatal membranes. The presence of 0.3 mM GTP led to a four-to-fivefold increase in the Kd values for the inhibition of 3H-spiroperidol binding by dopamine-receptor agonists. No changes in Kd values were observed for antagonists. Dopamine-receptor agonists and antagonists have been defined by the stimulation or inhibition of dopamine-sensitive adenylate cyclase in the neostriatum11,12 or by their effects on the canine renal artery13. Controversy exists, however, as to whether binding studies using labelled neuroleptics such as spiroperidol actually measure dopamine receptors. Our finding of an agonist-specific effect of GTP supports the conclusion that 3H-spiroperidol is binding to functional dopamine receptors in the caudate nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rodbell, M. et al. Adv. Cyclic Nucleotide Res. 5, 3–29 (1975).

    CAS  PubMed  Google Scholar 

  2. Clement-Cormier, Y. C., Parrish, R. G., Petzold, G. L., Kebabian, J. W. & Greengard, P. J. J. Neurochem. 25, 143–149 (1975).

    Article  CAS  Google Scholar 

  3. Brown, E. M., Fedak, S. A., Woodard, C. J. & Aurbach, G. D. J. biol. Chem. 251, 1239–1246 (1976).

    CAS  PubMed  Google Scholar 

  4. Ronfogalis, B. D., Thornton, M. & Wade, D. N. J. Neurochem. 27, 1533–1535 (1976).

    Article  Google Scholar 

  5. Maguire, M. E., Ross, E. M. & Gilman, A. G. Adv. Cyclic Nucleotide Res. 8, 1–83 (1977).

    CAS  PubMed  Google Scholar 

  6. Rodbell, M., Krans, H. M. J., Pohl, S. L. & Birnbaumer, L. J. biol. Chem. 246, 1872–1876 (1971).

    CAS  PubMed  Google Scholar 

  7. Maguire, M. E., Van Arsdale, P. M. & Gilman, A. G. Molec. Pharmac. 12, 335–339 (1976).

    CAS  Google Scholar 

  8. Williams, L. T. & Lefkowitz, R. J. J. biol. Chem. 252, 7207–7213 (1977).

    CAS  PubMed  Google Scholar 

  9. Lefkowitz, R. J., Mullikin, D., Wood, C. L., Gore, T. B. & Mukherjee, C. J. biol. Chem. 252, 5295–5303 (1977).

    CAS  PubMed  Google Scholar 

  10. Blume, A. J. Proc. natn. Acad. Sci. U.S.A. 75, 1713–1717 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Miller, R. J., Horn, A. S. & Iversen, L. L. Molec. Pharmac. 10, 759–766 (1974).

    CAS  Google Scholar 

  12. Iversen, L. L. Science 188, 1084–1089 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Goldberg, L. I., Volkman, P. H. & Kohli, J. D. A. Rev. Pharmac. Toxic. 18, 57–79 (1978).

    Article  CAS  Google Scholar 

  14. Creese, I., Schneider, R. & Snyder, S. Eur. J. Pharmac. 46, 377–381 (1977).

    Article  CAS  Google Scholar 

  15. Fields, J. Z., Reisine, T. D. & Yamamura, H. I. Brain Res. 136, 578–584 (1977).

    Article  CAS  Google Scholar 

  16. Leysen, J. E., Gommeren, W. & Laduron, P. M. Biochem. Pharmac. 27, 307–316 (1978).

    Article  CAS  Google Scholar 

  17. Seeman, P., Chau-Wong, M., Tedesco, J. & Wong, K. Proc. natn. Acad. Sci. U.S.A. 72, 4376–4380 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Burt, D. R., Enna, S. J., Creese, I. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 72, 4655–4659 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Roberts, P. J., Woodruff, G. N. & Poat, J. A. Molec. Pharmac. 13, 541–547 (1977).

    CAS  Google Scholar 

  20. Haga, R., Ross, E., Anderson, H. J. & Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 74, 2016–2020 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Kebabian, J. Brain Res. 144, 194–198 (1978).

    Article  CAS  Google Scholar 

  22. Klee, W. A. & Nirenberg, M. Nature 263, 609–612 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Burt, D. R., Creese, I. & Snyder, S. H. Molec. Pharmac. 12, 800–812 (1976).

    CAS  Google Scholar 

  24. Laduron, P. M., Janssen, P. F. M. & Leysen, J. E. Biochem. Pharmac. 27, 323–328 (1978).

    Article  CAS  Google Scholar 

  25. Schwarcz, R., Creese, I., Coyle, J. T. & Snyder, S. H. Nature 271, 766–768 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZAHNISER, N., MOLINOFF, P. Effect of guanine nucleotides on striatal dopamine receptors. Nature 275, 453–455 (1978). https://doi.org/10.1038/275453a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing