Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The length of nucleosome-associated DNA is the same in both transcribed and nontranscribed regions of chromatin

Abstract

THE fundamental structural unit of chromatin is a nucleoprotein complex containing two molecules each of the histones H2A, H2B, H3 and H4 in association with approximately 200 base pairs of DNA (for review see ref. 1). At least 85% of nuclear DNA is organised in these chromatin subunits or nucleosomes2, and it has been shown that both transcribed3–8 and nontranscribed9–12 DNA sequences are arranged in nucleosomes. The length of DNA in the nucleosome repeat unit varies between organisms and even between cell types in the same organism1. The origin of this variation in repeat length, ranging from 160 to 240 base pairs per nucleosome, is unknown. However, there is a general correlation between repeat lengths and transcriptional activity : transcriptionally active cells have shorter nucleosome repeat lengths than less active cells13. Thus, it has been suggested that the nucleosome repeat length of transcribed DNA may be different from that of nontranscribed sequences, thereby implicating nucleosome oranisation in gene regulation14. We report here that both transcribed and nontranscribed DNA sequences are organised in nucleosomes with the same repeat lengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kornberg, R. D. A. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  Google Scholar 

  2. Noll, M. Nucleic Acids Res. 1, 1573–1578 (1974).

    Article  CAS  Google Scholar 

  3. Lacy, E. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 72, 3978–3982 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Kuo, M. T., Sahasrabuddhe, C. G. & Saunders, G. F. Proc. natn. Acad. Sci. U.S.A. 73, 1572–1575 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Gottesfeld, J. M. & Butler, P. J. G. Nucleic Acids Res. 4, 3155–3173 (1977).

    Article  CAS  Google Scholar 

  6. Mathis, D. J. & Gorovsky, M. A. Biochemistry 15, 750–755 (1976).

    Article  CAS  Google Scholar 

  7. Piper, P. W. et al. Nucleic Acids Res. 3, 493–505 (1976).

    Article  CAS  Google Scholar 

  8. Reeves, R. Science 194, 529–532 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Lipchitz, L. & Axel, R. Cell 9, 355–364 (1976).

    Article  CAS  Google Scholar 

  10. Musich, P. R., Brown, F. L. & Maio, J. J. Proc. natn. Acad. Sci. U.S.A. 74, 3297–3301 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Bokhon'ko, A. & Reeder, R. H. Biochem. biophys. Res. Commun. 70, 146–152 (1976).

    Article  CAS  Google Scholar 

  12. Horz, W., Igo-Kemenes, T., Pfeiffer, W. & Zachau, H. G. Nucleic Acids Res. 3, 3213–3225 (1976).

    Article  CAS  Google Scholar 

  13. Thomas, J. O. & Thompson, R. J. Cell 10, 633–640 (1977).

    Article  CAS  Google Scholar 

  14. Morris, N. R. Cell 9, 627–632 (1976).

    Article  CAS  Google Scholar 

  15. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  16. Flamm, W. G., Walker, P. M. B. & McCallum, M. J. molec. Biol. 40, 423–443 (1972).

    Article  Google Scholar 

  17. Pardue, M. L. & Gall, J. Science 168, 1356–1358 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Horz, W. & Zachau, H. G. Eur. J. Biochem. 73, 383–392 (1977).

    Article  CAS  Google Scholar 

  19. Hewish, D. R. & Burgoyne, L. A. Biochem. biophys. Res. Commun. 52, 504–510 (1973).

    Article  CAS  Google Scholar 

  20. Botchan, M., Topp, W. & Sambrook, J. Cell 9, 269–287 (1976).

    Article  CAS  Google Scholar 

  21. Rabbits, T. H., Forster, A., Smith, M. & Gillam, S. Eur. J. Immun. 7, 43–48 (1977).

    Article  Google Scholar 

  22. Tereba, A. & McCarthy, B. J. Biochemistry 12, 4675–4679 (1973).

    Article  CAS  Google Scholar 

  23. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GOTTESFELD, J., MELTON, D. The length of nucleosome-associated DNA is the same in both transcribed and nontranscribed regions of chromatin. Nature 273, 317–319 (1978). https://doi.org/10.1038/273317a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/273317a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing