Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complementation analysis of hormone-sensitive adenylate cyclase

Abstract

PLASMA membranes of most animal cells respond to specific hormonal signals by synthesising adenosine 3′,5′ cyclic monophosphate (cyclic AMP) from ATP, a reaction catalysed by adenylate cyclase. The precise molecular basis of this membrane response has not been defined. In particular, we do not know the number of molecular species required for transduction of hormonal signals into stimulation of cyclic AMP synthesis. Catalytic adenylate cyclase and specific hormone binding activities can be separated on the basis of their physical properties1–3. However, hormonal stimulation may require one or more other molecules necessary for coupling the two activities in membranes. One of these may contain a guanyl nucleotide regulatory site, as guanyl trinucleotides are strictly required for hormonal stimulation of cyclase in several membrane systems4–8. Genetic complementation analysis can help to define the minimum number of gene products involved in a complex biochemical function. Although subject to qualifications, the principle is simple : if a cross between two mutant cells bearing a recessive phenotype fails to reconstitute the wild-type (WT or normal) phenotype, both mutant parental cells must bear a lesion in a common gene product; if the cross produces a WT phenotype, the two parental mutations must affect different gene products. Here we apply this method of analysis to the hormone-sensitive cyclase system of the S49 lymphoma tissue culture line, in which two distinct classes of variant clones with stable deficiencies in hormonal stimulation of cyclase have been selected9–10. We have constructed viable hybrid clones by crossing each of these variants with WT, and with each other. We describe the resulting hybrid phenotypes and their implications regarding the molecular components of hormone-sensitive adenylate cyclase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Limbird, L. E. & Lefkowitz, R. J. J. biol. Chem. 252, 799–802 (1977).

    CAS  PubMed  Google Scholar 

  2. Haga, T., Haga, K. & Gilman, A. G. J. biol. Chem. 252, 5776–5782 (1977).

    CAS  PubMed  Google Scholar 

  3. Welton, A. F. et al. J. biol. Chem. 252, 5447–5950 (1977).

    Google Scholar 

  4. Rodbell, M., Birnbaumer, L., Pohl, S.L. & Krans, H. M. J. J. biol. Chem. 246, 1877–1882 (1971).

    CAS  PubMed  Google Scholar 

  5. Rodbell, M., Lin, M. C. & Salomon, Y. J. biol. Chem. 249, 59–65 (1974).

    CAS  PubMed  Google Scholar 

  6. Bilizekian, J. P. & Aurbach, G. D. J. biol. Chem. 249, 157–161 (1974).

    Google Scholar 

  7. Londos, C. et al. Proc. natn. Acad. Sci. U.S.A. 71, 3087–3090 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Ross, E. M., Maguire, M. E., Sturgill, T. W., Biltonen, R. L. & Gilman, A. G. J. biol. Chem. 252, 5761–5775 (1977).

    CAS  PubMed  Google Scholar 

  9. Bourne, H. R., Coffino, P. & Tomkins, G. M. Science 187, 750–752 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Haga, T. Y., Ross, E. M., Anderson, H. J. & Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 74, 2016–2020 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Johnson, G. L. & Bourne, H. R. Biochem. biophys. Res. Commun. 78, 792–798 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Insel, P. A. et al. Molec. Pharmac. 12, 1062–1069 (1976).

    CAS  Google Scholar 

  13. Gefter, M. L., Margulies, D. H. & Scharff, M. D. Somatic Cell Genet. 3, 231–236 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Lemaire, I. & Coffino, P. J. Cell Physiol. 92, 437–446 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 67, 305–312 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Bourne, H. R., Coffino, P. & Tomkins, G. M. J. Cell Physiol. 85, 611–620 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Ross, E. M. & Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 74, 3715–3719 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Ross, E. M. & Gilman, A. G. J. biol. Chem. 252, 6966–6969 (1977).

    CAS  PubMed  Google Scholar 

  19. Cassel, D. & Selinger, Z. J. cyclic Nucleotide Res. 3, 11–22 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NAYA-VIGNE, J., JOHNSON, G., BOURNE, H. et al. Complementation analysis of hormone-sensitive adenylate cyclase. Nature 272, 720–722 (1978). https://doi.org/10.1038/272720a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272720a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing