Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monolayer coupling in sphingomyelin bilayer systems

Abstract

THE transmission of information across biological membranes is of obvious importance. In the past, discussions of possible mechanisms for transmembrane linkage, in the absence of transport or permeation, have centred on the role of the integral membrane proteins, which function as receptors1. When the lipids have been discussed in this context, the speculations have centred on their influence on the proteins, by way of a ‘viscotropic’ effect2, induced by changes in ionic strength3 or temperature; that is, it has generally been implicitly assumed that the two lipid monolayers act independently of each other4. A detailed nuclear magnetic resonance (NMR) study of the thermal behaviour of small single-walled vesicles composed of synthetic phosphatidylcholines has shown that this is indeed the case for these systems5. In this report, we present evidence that vesicles composed of another class of phospholipid, sphingomyelin, do exhibit coupling between the two monolayers, and thus could be involved in transmembrane communication in biological systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicolson, G. L. Biochim. biophys. Acta 457, 57–108 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Kimelberg, H. K. & Paphadjopoulos, D. Biochim. biophys. Acta 282, 277–292, (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Träuble, H. & Eibl, H. Proc. natn. Acad. Sci. U.S.A. 71, 214–219 (1974).

    Article  ADS  Google Scholar 

  4. Träuble, H. in Structure of Biological Membranes 509–550 (Plenum, New York, 1977).

    Book  Google Scholar 

  5. Sillerud, L. O. & Barnett, R. E. Biochemistry (in the Press).

  6. Hertz, R. & Barenholz, Y. Chem. Phys. Lipids 15, 138–156 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Barenholz, Y., Suurkuusk, T., Mountcastle, D., Thompson, T. E. & Biltonen, R. L. Biochemistry 15, 2441–2447 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt C. F., Barenholz, Y. & Thompson, T. E. Biochemistry 16, 2649–2656 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Abrahamsson, S., Dahlen, B., Lofgren, H., Pascher, I. & Sundell, S. in Structure of Biological Membranes 1–23 (Plenum, New York, 1977), and references therein.

    Book  Google Scholar 

  10. Untracht, S. H. & Shipley, G. G. J. biol. Chem. 252, 4449–4457 (1977).

    CAS  Google Scholar 

  11. Rouser, G., Nelson, G. J., Fleischer, S. & Simon, G. in Biological Membranes 1, 5–69 (Academic, London, 1968).

    Google Scholar 

  12. White, D. A. in Form and Function of Phospholipids 441–432 (Elsevier, Amsterdam, 1973).

    Google Scholar 

  13. Kuksis, A. & Marai, L. Lipids 2, 217–224 (1967).

    Article  CAS  PubMed  Google Scholar 

  14. Trewella, M. A. & Collins, F. D. Biochim. biophys, Acta 296, 51–61 (1973).

    Article  Google Scholar 

  15. Bystrov, V. F., Dubrovina, N. I., Barsukov, L. I. & Bergelson, L. D. Chem. Phys. Lipids 6, 343–350 (1971).

    Article  CAS  Google Scholar 

  16. Levine, Y. K., Lee, A. G., Birdsall, N. T. M. & Robinson, J. D. Biochim. biophys. Acta 291, 592–607 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Sheetz, M. P. & Chan, S. I. Biochemistry 11, 4573–4581 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Suurkuusk, J., Lentz, B. R., Barenholz, Y., Biltonen, R. L. & Thompson, T. E. Biochemistry 15, 1393–1401 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Hauser, H., Phillips, M. C., Levine, B. A. & Williams, R. J. P. Eur. J. Biochem. 58, 133–144 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Ito, T., Ohnishi, S., Ishinaga, M. & Kito, M. Biochemistry 14, 3064–3069 (1975).

    Article  CAS  Google Scholar 

  21. Laine, R. A., Stellner, K. & Hakomori, S. in Methods in Membrane Biology 2, 205–244 (Plenum, New York, 1974), and references therein.

    Book  Google Scholar 

  22. Karlsson, K. in Structure of Biological Membranes 245–274 (Plenum, New York 1977).

    Book  Google Scholar 

  23. Fishman, P. H. & Brady, R. O. Science, 194, 906–915 (1976), and references therein.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Patt, S. L. & Sykes, B. D. J. chem. Phys. 56, 3182–3183 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHMIDT, C., BARENHOLZ, Y., HUANG, C. et al. Monolayer coupling in sphingomyelin bilayer systems. Nature 271, 775–777 (1978). https://doi.org/10.1038/271775a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271775a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing