Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure

Abstract

Colossal magnetoresistance—a huge decrease in resistance in response to a magnetic field—has recently been observed in manganese oxides with perovskite structure. This effect is attracting considerable interest from both fundamental and practical points of view1. In the context of using this effect in practical devices, a noteworthy feature of these materials is the high degree of spin polarization of the charge carriers, caused by the half-metallic nature of these materials20,21; this in principle allows spin-dependent carrier scattering processes, and hence the resistance, to be strongly influenced by low magnetic fields. This type of field control has been demonstrated for charge-carrier scattering at tunnelling junctions2,3 and at crystal-twin or ceramic grain boundaries4,5, although the operating temperature of such structures is still too low (150 K) for most applications. Here we report a material—Sr2FeMoO6, an ordered double perovskite6—exhibiting intrinsic tunnelling-type magnetoresistance at room temperature. We explain the origin of this behaviour with electronic-structure calculations that indicate the material to be half-metallic. Our results show promise for the development of ordered perovskite magnetoresistive devices that are operable at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The density of states (DOS) of Sr2FeMoO6.
Figure 2: Temperature dependence of the resistivity of the sintered polycrystalline sample of Sr2FeMoO6 at zero field and under magnetic fields (in T) of 0.2, 0.5, 1, 3 and 7.
Figure 3: Isothermal magnetoresistance (upper panels) and magnetization M curves (lower panels) for polycrystalline ceramics of Sr2FeMoO6. a, At 4.2 K; b, at 300 K.
Figure 4: Temperature dependence of the low-field magnetoresistance.

Similar content being viewed by others

References

  1. Hundley, M. F., Nickel, J. H., Ramesh, R. & Tokura, Y. (eds) Science and Technology of Magnetic Oxides Mater. Res. Soc. Proc. 494, (1998).

  2. Sun, J. Z. et al . Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganate perovskites. Appl. Phys. Lett. 69, 3266–3268 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Yu, L. et al . Large magnetotunneling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3tunnel junctions. Phys. Rev. B 54, R8357–R8360 (1996).

    Article  ADS  Google Scholar 

  4. Mathur, N. D. et al . Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature 387, 266–268 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Hwang, H. Y., Cheong, S.-W., Ong, N. P. & Batlogg, B. Spin polarized tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Galasso, F. S. Structure, Properties and Preparation of Perovskite-type Compounds (Pergamon, London, (1969).

    Google Scholar 

  7. Patterson, F. K., Moeller, C. W. & Ward, R. Magnetic oxides of molybdenum(V) and tungsten(V) with the ordered perovskite structure. Inorg. Chem. 2, 196–198 (1963).

    Article  CAS  Google Scholar 

  8. Galasso, F. S., Douglas, F. C. & Kasper, R. J. Relationship between magnetic curie points and cell sizes of solutions with the ordered perovskite structure. J. Chem. Phys. 44, 1672–1674 (1966).

    Article  ADS  CAS  Google Scholar 

  9. Itoh, M., Ohta, I. & Inaguma, Y. Valency pair and properties of 1:1 ordered perovskite-type compounds Sr2MMoO6 (Mn,Fe,Co). Mater. Sci. Eng. B 41, 55–58 (1996).

    Article  Google Scholar 

  10. Pickett, W. E. Spin-density-functional-based search for half-metallic antiferromagnets. Phys. Rev. B 57, 10613–10619 (1998); Single spin superconductivity. Phys. Rev. Lett. 77, 3185–3188 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Hwang, H. Y. & Cheong, S.-W. Low-field magnetoresistance in the pyrochlore Tl2Mn2O7. Nature 389, 942–944 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Hwang, H. Y. & Cheong, S.-W. Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2films. Science 278, 1607–1609 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Xiao, J. Q., Jiang, J. S. & Chien, C. L. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 68, 3749–3752 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Fujimori, H., Mitani, S. & Ohnuma, S. Tunnel-type GMR in metal-nonmetal granular alloy thin films. Mater. Sci. Eng. B 31, 219–223 (1995).

    Article  Google Scholar 

  15. Sleight, A. W., Longo, J. & Ward, R. Compounds of osmium and rhenium with the ordered perovskite structure. Inorg. Chem. 1, 245–250 (1962).

    Article  CAS  Google Scholar 

  16. Pedrew, J. P. Atoms, molecules, solids, and surfaces: application of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  ADS  Google Scholar 

  17. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Lassonen, K., Pasquarello, A., Car, R., Lee, C. & Vanderbilt, D. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47, 10142–10153 (1993).

    Article  ADS  Google Scholar 

  19. Friedel, J. Metallic alloys. Nuovo Cimento Suppl. 2, 287–311 (1958).

    Article  Google Scholar 

  20. Okimoto, Y. et al . Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1−x Sr x MnO3. Phys. Rev. Lett. 75, 109–112 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Park, J.-H. et al . Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kawasaki, M. Izumi, A. Asamitsu, Y. Tomioka and T. Manako for discussions. This work was partly supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tokura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, KI., Kimura, T., Sawada, H. et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998). https://doi.org/10.1038/27167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27167

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing