Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental evidence for a two-dimensional quantized Hall insulator

Abstract

The general theoretical definition of an insulator is a material in which the conductivity vanishes at the absolute zero of temperature. In classical insulators, such as materials with a band gap, vanishing conductivities lead to diverging resistivities. But other insulators can show more complex behaviour, particularly in the presence of a high magnetic field, where different components of the resistivity tensor can display different behaviours: the magnetoresistance diverges as the temperature approaches absolute zero, but the transverse (Hall) resistance remains finite. Such a system is known as a Hall insulator1. Here we report experimental evidence for a quantized2 Hall insulator in a two-dimensional electron system—confined in a semiconductor quantum well. The Hall resistance is quantized in the quantum unit of resistance h/e2, where h is Planck's constant and e the electronic charge. At low fields, the sample reverts to being a normal Hall insulator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Hall and diagonal resistivities as a function of B-field.
Figure 2: The Hall and diagonal resistivities as a function of B-field for different temperatures.
Figure 3: Plot of σxx as a function of σxy for different temperatures.

Similar content being viewed by others

References

  1. Kivelson, S., Lee, D. H. & Zhang, S. C. Global phase diagram in the quantum Hall effect. Phys. Rev. B 46, 2223–2238 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Shimshoni, E. & Auerbach, A. Quantized Hall insulator: transverse and longitudinal transport. Phys. Rev. B 55, 9817–9823 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Hilke, M. et al . Symmetry in the insulator–quantum Hall-insulator transition, observed in a Ge/SiGe quantum well. Phys. Rev. B 56, R15545–R15548 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Shahar, D., Tsui, D. C., Shayegan, M., Bhatt, R. V. & Cunningham, J. E. Universal conductivity at the quantum Hall liquid to insulator transition. Phys. Rev. Lett. 74, 4511–4514 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Willett, R. L. et al . Termination of the series of fractional quantum Hall states at small filling factors. Phys. Rev. B 38, 7881–7884 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Goldman, V. J., Shayegan, M. & Tsui, D. C. Evidence for the fractional quantum Hall state at ν = 1/7. Phys. Rev. Lett. 61, 881–884 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Sajoto, T., Li, Y. P., Engel, L. W., Tsui, D. C. & Shayegan, M. Hall resistance of the reentrant insulating phase around the ν = 1/5 fractional quantum Hall liquid. Phys. Rev. Lett. 70, 2321–2324 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Goldman, V. J., Wang, J. K., Su, B & Shayegan, M. Universality of the Hall effect in magnetic field localized two dimensional electron system. Phys. Rev. Lett. 70, 647–650 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Shahar, D. et al . On the nature of the Hall insulator. Solid State Commun. 102, 817–821 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Shahar, D. et al . Adifferent view of the quantum Hall plateau-to-plateau transition. Phys. Rev. Lett. 79, 479–482 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Hughes, R. J. F. et al . Magnetic-field-induced insulator–quantum Hall-insulator transition in a disordered two-dimensional electron gas. J. Phys.: Condens. Matter 6, 4763–4770 (1994).

    ADS  CAS  Google Scholar 

  12. Kravchenko, S. V., Furneaux, J. E. & Pudalov, V. M. Hall insulator in a two-dimensional electron system in silicon in the extreme quantum limit. Phys. Rev. B 49, 2250–2252 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Jiang, H. W., Johnson, C. E., Wang, K. L. & Hannahs, S. T. Observation of magnetic-field-induced delocalization: transition from Anderson insulator to quantum Hall conductor. Phys. Rev. Lett. 71, 1439–1442 (1990).

    Article  ADS  Google Scholar 

  14. Lee, C. H., Chang, Y. H., Suen, Y. W. & Lin, H. H. Magnetic-field-induced insulator–quantum Hall conductor–insulator transitions in doped GaAs/AlGaAs quantum wells. Phys. Rev. B 56, 15238–15241 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Viehweger, O. & Efetov, K. B. The Hall coefficient of disordered electronic systems in high magnetic fields. J. Phys. Condens. Matter 2, 7049–7054 (1990).

    Article  ADS  Google Scholar 

  16. Zhang, S. C., Kivelson, S. & Lee, D. H. Zero temperature Hall coefficient of an insulator. Phys. Rev. Lett. 69, 1252–1253 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Shimshoni, E., Sondhi, S. L. & Shahar, D. Duality near the quantum Hall transitions. Phys. Rev. B 55, 13730–13738 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Shahar, D. et al . Evidence for charge flux duality near the quantum Hall liquid-to-insulator transition. Science 274, 589–591 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Pryadko, L. P. & Chaltikian, K. Network of edge states: a random Josephson junction array description. Phys. Rev. Lett. 80, 584–587 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Dykhne, A. & Ruzin, I. Theory of the fractional quantum Hall effect: the two phase model. Phys. Rev. B 50, 2369–2379 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Ando, T. Universal scaling relation of the conductivities in quantum Landau levels. Surface Science 170, 243–248 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Pruisken, A. M. M. Dilute instanton gas as the precursor to the integral quantum Hall effect. Phys. Rev. B 32, 2636–2639 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Wei, H. P., Tsui, D. C. & Pruisken, A. M. M. Localization and scaling in the quantum Hall regime. Phys. Rev. B 33, 1488–1491 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Auerbach, L. P. Pryadko, E. Shimshoni and S. L. Sondhi for discussions. This work was supported in part by the National Science Foundation, and M.H. was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilke, M., Shahar, D., Song, S. et al. Experimental evidence for a two-dimensional quantized Hall insulator. Nature 395, 675–677 (1998). https://doi.org/10.1038/27160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27160

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing