Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication

Abstract

DNA replication in eukaryotic cells initiates from many replication origins1 which fire throughout the S phase of the cell cycle in a predictable pattern: some origins fire early, others late2. Little is known about how the initiation of DNA replication and the elongation of newly synthesized DNA strands are coordinated during S phase. Here we show that, in budding yeast, hydroxyurea, which blocks the progression of replication forks from early-firing origins, also inhibits the firing of late origins. These late origins are maintained in the initiation-competent prereplicative state for extended periods. The block to late origin firing is an active process and is defective in yeast with mutations in the rad53 and mec1 checkpoint genes, indicating that regulation of late origin firing may also be an important component of the ‘intra-S-phase’ checkpoint3 and may aid cell survival under adverse conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of replication intermediates (RIs) from stalled replication forks.
Figure 2: Conversion from the pre- to the postreplicative state is blocked at late firing origins of replication in hydroxyurea.
Figure 3: Inhibition of late origin firing is an active process.
Figure 4: Model for regulation of late-firing origins.

Similar content being viewed by others

References

  1. Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327–341 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Fangman, W. L. & Brewer, B. J. Aquestion of time–replication origins of eukaryotic chromosomes. Cell 71, 363–366 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Paulovich, A. G. & Hartwell, L. H. Acheckpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Reynolds, A. E., McCarroll, R. M., Newlon, C. S. & Fangman, W. L. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9, 4488–4494 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bousset, K. & Diffley, J. F. X. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12, 480–490 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Diffley, J. F. X., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K. & Diffley, J. F. X. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180–182 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Santocanale, C. & Diffley, J. F. X. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 15, 6671–679 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F. X. & Nasmyth, K. Activation of S-phase promoting CDKs in late G1 defines a “point of no return” after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10, 1516–1531 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Ferguson, B. M. & Fangman, W. L. Aposition effect on the time of replication origin activation in yeast. Cell 68, 333–339 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Dubey, D. D. et al . Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11, 5346–5355 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Broach, J. R. et al . Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb. Symp. Quant. Biol. 47, 1165–1173 (1982).

    Article  CAS  Google Scholar 

  13. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Raghuraman, M. K., Brewer, B. J. & Fangman, W. L. Cell cycle-dependent establishment of a late replication program. Science 276, 806–809 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Zakian, V. A. ATM-related genes: what do they tell us about functions of the human gene? Cell 82, 685–687 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  17. Larner, J. M., Lee, H. & Hamlin, J. L. Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol. Cell. Biol. 14, 1901–1908 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Santocanale, C., Neecke, H., Longhese, M. P., Lucchini, G. & Plevani, P. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J. Mol. Biol. 254, 595–607 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Rowley, A., Cocker, J. H., Harwood, J. & Diffley, J. F. X. Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J. 14, 2631–2641 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Diffley, J. F. X. & Cocker, J. H. Protein–DNA interactions at a yeast replication origin. Nature 357, 169–172 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1989).

    Google Scholar 

  22. Ferguson, B. M., Brewer, B. J., Reynolds, A. E. & Fangman, W. L. Ayeast origin of replication is activated late in S phase. Cell 65, 507–515 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8, 2401–2415 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wellinger, R. J., Ethier, K., Labrecque, P. & Zakian, V. A. Evidence for a new step in telomere maintenance. Cell 85, 423–433 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Paulovich, A. G., Margulies, R. U., Garvik, B. M. & Hartwell, L. H. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145, 45–62 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Elledge and L. Hartwell for yeast strains; V. A. Zakian for plasmid pYLPV; members of the Diffley lab for stimulating discussions; and members of the ICRF Photography, Peptide Synthesis and Oligonucleotide Synthesis departments for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. X. Diffley.

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santocanale, C., Diffley, J. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618 (1998). https://doi.org/10.1038/27001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27001

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing