Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The molecular mechanisms of anaesthesia

Abstract

IT is generally accepted that neutral anaesthetics, such as the n-alkanols and n-alkanes, act from a hydrophobic site1. Discussion has tended to focus on the nature of this site and, particularly, whether it is located in a membrane protein or in the interior of a bilayer2,3. If the site is in a bilayer then the question arises as to how the proteins involved in nervous impulse propagation are affected. We present here new evidence concerning the anaesthetic properties of the n-alkanes which points to the bilayer as the site of action and also suggests a mechanism for the inhibition of impulse propagation. Briefly, the cut-off in anaesthetic potency on ascending the homologous series is found to be closely related to the decrease in adsorption of the alkane into a cholesterol-containing bilayer. In addition, the anaesthetic hydrocarbons produce a concentration-dependent increase in bilayer thickness. On the basis of these two observations, and from our knowledge of the properties of the ion channel-forming polypeptide gramicidin A (ref. 4) we propose that a thickening of the bilayer regions of the nerve membrane by the alkanes destabilises the open ionic channels formed during electrical excitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seeman, P. Pharmac. Rev. 24, 583–655 (1972).

    CAS  Google Scholar 

  2. Boggs, J. M., Yoong, T. & Hsia, J. C. Molec. Pharmac. 12, 127–135 (1976).

    CAS  Google Scholar 

  3. Lee, A. G. Nature 262, 545–548 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Haydon, D. A. & Hladky, S. B. Q. Rev. Biophys. 5, 187–282 (1972).

    Article  CAS  Google Scholar 

  5. Fettiplace, R. et al. in Meth. membr. Biol. 4 (ed. Korn, E. D.) 1–75 (Plenum, New York, 1975).

    Google Scholar 

  6. Mullins, L. J. in Handbook of Neurochemistry 6 (ed. Lajtha, A.) 395–421 (Plenum, New York, 1971).

    Google Scholar 

  7. Fühner, H. Biochem. Z. 115, 235–261 (1921).

    Google Scholar 

  8. Ferguson, J. Proc. R. Soc. B 127, 387–404 (1939).

    ADS  CAS  Google Scholar 

  9. Fettiplace, R., Andrews, D. M. & Haydon, D. A. J. membr. Biol. 5, 277–296 (1971).

    Article  CAS  Google Scholar 

  10. Chacko, G. K., Villegas, G. M., Barnola, F. V., Villegas, R. & Goldman, D. E. Biochim. biophys. Acta 443, 19–32 (1976).

    Article  CAS  Google Scholar 

  11. Andrews, D. M., Manev, E. D. & Haydon, D. A. Spec. Disc. Faraday Soc. 1, 46–56 (1970).

    Article  CAS  Google Scholar 

  12. Rang, H. P. Q. Rev. Biophys. 7, 283–399 (1975).

    Article  Google Scholar 

  13. Almers, W. & Levinson, S. R. J. Physiol., Lond. 247, 483–509 (1975).

    Article  CAS  Google Scholar 

  14. Conti, F., DeFelice, L. J. & Wanke, E. J. Physiol., Lond. 248, 45–82 (1975).

    Article  CAS  Google Scholar 

  15. Haydon, D. A. Ann. N.Y. Acad. Sci. 268, 2–16 (1975).

    Article  ADS  Google Scholar 

  16. Requena, J. & Haydon, D. A. Proc. R. Soc. A 347, 161–177 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Brink, F. & Posternak, J. M. J. cell. comp. Physiol. 32, 211–233 (1948).

    Article  CAS  Google Scholar 

  18. Mautner, H. G. & Clemson, H. C. in Medicinal Chemistry, 3rd edn (ed. Burger, A.) 1365–1383 (Wiley-Interscience, New York, 1970).

    Google Scholar 

  19. Miller, K. W., Paton, W. D. M., Smith, R. A. & Smith, E. B. Molec. Pharmacol. 9, 131–143 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAYDON, D., HENDRY, B., LEVINSON, S. et al. The molecular mechanisms of anaesthesia. Nature 268, 356–358 (1977). https://doi.org/10.1038/268356a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268356a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing