Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficiency of signalling through cytokine receptors depends critically on receptor orientation

Abstract

Human erythropoietin is a haematopoietic cytokine required for the differentiation and proliferation of precursor cells into red blood cells1. It activates cells by binding and orientating two cell-surface erythropoietin receptors (EPORs) which trigger an intracellular phosphorylation cascade2. The half-maximal response in a cellular proliferation assay is evoked at an erythropoietin concentration of 10 pM (ref. 3), 10−2 of its K d value for erythropoietin–EPOR binding site 1 (Kd ≈ 1 nM), and 10−5 of the K d for erythropoietin–EPOR binding site 2 (Kd ≈ 1 μM)4. Overall half-maximal binding (IC50) of cell-surface receptors is produced with 0.18 nM erythropoietin, indicating that only 6% of the receptors would be bound in the presence of 10 pM erythropoietin. Other effective erythropoietin-mimetic ligands that dimerize receptors can evoke the same cellular responses5,6 but much less efficiently, requiring concentrations close to their K d values (0.1 μM). The crystal structure of erythropoietin complexed to the extracellular ligand-binding domains of the erythropoietin receptor, determined at 1.9 Å from two crystal forms, shows that erythropoietin imposes a unique 120° angular relationship and orientation that is responsible for optimal signalling through intracellular kinase pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the erythropoietin–(EPObp)2 complex.
Figure 2: Stereo views.

Similar content being viewed by others

References

  1. Graber, S. E. & Krantz, S. B. Erythropoietin and the control of red blood cell production. Annu. Rev. Med. 29, 51–66 (1978).

    Article  CAS  Google Scholar 

  2. Damen, J. E. & Krystal, G. Early events in erythropoietin-induced signaling. Exp. Hematol. 24, 1455–1459 (1996).

    CAS  PubMed  Google Scholar 

  3. Johnson, D. L. et al. Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1. Biochemistry 37, 3699–3710 (1998).

    Article  CAS  Google Scholar 

  4. Philo, J. S., Aoki, K. H., Arakawa, T., Narhi, L. O. & Wen, J. Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry 35, 1681–1691 (1996).

    Article  CAS  Google Scholar 

  5. Wrighton, N. C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–464 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Livnah, O. et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 Å. Science 273, 464–471 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Derby, P., Aoki, K. H., Katta, V. & Rohde, M. F. in Techniques in Protein Chemistry VII (ed. Marshak, D.R.) 109–119 Academic, San Diego, (1996).

    Book  Google Scholar 

  8. Hilton, D. J., Watowich, S. S., Katz, L. & Lodish, H. F. Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J. Biol. Chem. 271, 4699–4708 (1996).

    Article  CAS  Google Scholar 

  9. Abrahams, J. P. & Leslie, A. G. W. Acta Crystallogr. D 52, 30–42 1996).

    Google Scholar 

  10. Cheetham, J. C. et al. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nature Struct. Biol. (in the press).

  11. De Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Sprang, S. R. & Bazan, J. F. Cytokine structural taxonomy and mechanisms of receptor engagement. Curr. Opin. Struct. Biol. 3, 815–827 (1993).

    Article  CAS  Google Scholar 

  13. Rozwarski, D. A. et al. Structural comparisons among the short-chain helical cytokines. Structure 2, 159–173 (1994).

    Article  CAS  Google Scholar 

  14. Yoshimura, A. et al. Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing, ligand binding, and activation of the receptor. J. Biol. Chem. 267, 11619–11625 (1992).

    CAS  PubMed  Google Scholar 

  15. Baumgartner, J. W., Wells, C. A., Chen, C. M. & Waters, M. J. The role of the WSXWS equivalent motif in growth-hormone receptor function. J. Biol. Chem. 269, 29094–29101 (1994).

    CAS  PubMed  Google Scholar 

  16. Barbone, F. P. et al. Mutagenesis studies of the human erythropoietin receptor. Establishment of structure–function relationships. J. Biol. Chem. 272, 4985–4992 (1997).

    Article  CAS  Google Scholar 

  17. Middleton, S. A. et al. Identification of a critical ligand-binding determinant of the human erythropoietin receptor—evidence for common ligand-binding motifs in the cytokine receptor family. J. Biol. Chem. 271, 14045–14054 (1996).

    Article  CAS  Google Scholar 

  18. Grodberg, J., Davis, K. L. & Sykowski, A. J. Alanine scanning mutagenesis of human erythropoietin identifies four amino acids which are critical for biological activity. Eur. J. Biochem. 218, 597–601 (1993).

    Article  CAS  Google Scholar 

  19. Wen, D. Y., Boissel, J. P., Showers, M., Ruch, B. C. & Bunn, H. F. Erythropoietin structure–function relationships–identification of functionally important domains. J. Biol. Chem. 269, 22839–22846 (1994).

    CAS  PubMed  Google Scholar 

  20. Matthews, D. J., Topping, R. S., Cass, R. T. & Giebel, L. B. Asequential dimerization mechanism for erythropoietin receptor activation. Proc. Natl Acad. Sci. USA 93, 9471–9476 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Elliott, S., Lorenzini, T., Chang, D., Barzilay, J. & Delorme, E. Mapping of the active site of recombinant human erythropoietin. Blood 89, 493–502 (1997).

    CAS  PubMed  Google Scholar 

  22. Clackson, T. & Wells, J. A. Ahot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Watowich, S. S. et al. Homodimerization and constitutive activation of the erythropoietin receptor. Proc. Natl Acad. Sci. USA 89, 2140–2144 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Narhi, L. O. et al. The effect of carbohydrate on the structure and stability of erythropoietin. J. Biol. Chem. 266, 23022–23026 (1991).

    CAS  PubMed  Google Scholar 

  25. Johnson, D. L. et al. Refolding, purification, and characterization of human erythropoietin binding protein produced in Escherichia coli. Prot. Express. Purif. 7, 104–113 (1996).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Google Scholar 

  28. Brunger, A. T. X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  29. Furey, W. & Swaminathan, S. Phases-95: a program package for processing and analyzing diffraction data from macromolecules. Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Philo, M. McGrath, P. Sprengeler, W. Welch, J. Rupert, L. Narhi, G.Rogers, M. Rohde, S. Jordan, K. Langley, R. Mackman and M. Venuti for valuable discussions. Structure analyses of Form 1 and Form 2 were independently performed at Axys Pharmaceuticals Inc. and Amgen Inc., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid S. Syed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syed, R., Reid, S., Li, C. et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998). https://doi.org/10.1038/26773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26773

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing