Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Feedback loop or output pathway in striato-nigral fibres?

Abstract

THE turnover of dopamine has been thought to be controlled by a ‘feedback’ pathway from the postsynaptic dopamine receptors in the striatum to the dopaminecontaining cells in the substantia nigra1. This concept formed the basis of an explanation of the effects of neuroleptics on dopamine turnover1,3. Evidence for a striato-nigral α-aminobutyrate (GABA)-containing pathway4,6 has supported the idea although there have been dissenting voices7,9. In particular, the discovery of dopamine receptors on the dopamine-containing cells themselves8,10 has led to the suggestion that these nigral receptors might explain results otherwise explained by the feedback hypothesis8. Nevertheless, the existence of these receptors does not exclude the action of feedback loop in the control of dopamine turnover. We report here an attempt to evaluate the action of the striato-nigral pathway in the control of dopamine metabolism. Our results suggest that lesions in the GABA-containing striato-nigral pathway, which spare the dopamine-containing fibres of the nigro-striatal system, do not affect dopamine metabolism in the nigro-striatal dopamine neurones or the increase in dopamine turnover after administration of haloperidol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carlsson, A., and Lindqvist, M., Acta pharmac. tox., 20, 140–144 (1963).

    Article  CAS  Google Scholar 

  2. Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., J. Pharmac. exp. Ther., 185, 560–572 (1973).

    CAS  Google Scholar 

  3. Kim, J., and Hassler, R., Brain Res., 88, 150–153 (1975).

    Article  CAS  Google Scholar 

  4. Kim, J., Bak, I. J., Hassler, R., and Okada, Y., Expl Brain Res., 14, 95–104 (1971).

    Article  CAS  Google Scholar 

  5. Kataoka, K., Bak, I. J., Hassler, R., Kim, J., and Wagner, A., Expl Brain Res., 19, 217–227 (1974).

    Article  CAS  Google Scholar 

  6. Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J., and Walberg, F., Brain Res., 71, 77–92 (1974).

    Article  CAS  Google Scholar 

  7. Bedard, P., and Larochelle, L., Expl Neurol., 41, 314–322 (1973).

    Article  CAS  Google Scholar 

  8. Groves, P. M., Wilson, C. J., Young, S. J., and Rebec, G. V., Science, 190 522–529 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Seeman, P., and Lee, T., Science, 188, 1217–1219 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Aghajanian, G. K., and Bunney, B. S., in Frontiers in Catecholamine Res. (edit. by Usdin, E., and Snyder, S.), 643–648 (Pergamon, New York, 1974).

    Google Scholar 

  11. Grafstein, B., in The Use of Axonal Transport for Studies of Neuronal Connectivity (edit. by Cowan, W. M., and Guenod, M.), 47–67 (Elsevier, Amsterdam, 1975).

    Google Scholar 

  12. Cowan, W. M., Gottlieb, D. I., Hendrikson, A. E., Price, J. L., and Woolsey, T. A., Brain Res., 37, 21–51 (1972).

    Article  CAS  Google Scholar 

  13. Ungerstedt, U., Acta. physiol. scand., Suppl., 367, 1–48 (1971).

    Article  CAS  Google Scholar 

  14. Pearson, J. D. M., and Sharman, D. F., Br. J. Pharmac., 53, 143–148 (1975); same authors J. Neurochem., 24, 1225–1228 (1975).

    Article  CAS  Google Scholar 

  15. Coyle, J. T., and Hendry, D., J. Neurochem., 21, 61–67 (1973).

    Article  CAS  Google Scholar 

  16. Hattori, T., McGeer, P. L., Fibiger, H. C., and McGeer, E. G., Brain Res., 54, 103–114 (1973).

    Article  CAS  Google Scholar 

  17. Ungerstedt, U., Acta physiol. scand., Suppl., 367, 69–93 (1971).

    Article  CAS  Google Scholar 

  18. Ungerstedt, U., and Marshall, J., in Chemical Tools in Catecholamine Research (edit. by Jonsson, G., Malmfors. T.,and Sachs, C.), 311–318 (North-Holland, Amsterdam, 1975).

    Google Scholar 

  19. Anden, N. E., Dahlstrom, A., Fuxe, K., and Larsson, K., Acta pharmac. (Kb). 24, 263–274 (1966).

    Article  CAS  Google Scholar 

  20. Prado-Alcala, R. A., et al., Physiol. Behav., 15, 283–287 (1975).

    Article  CAS  Google Scholar 

  21. Deniau, J. M., Feger, J., and Guyader Le, C., Brain Res., 104, 152–156 (1976).

    Article  CAS  Google Scholar 

  22. Konig, J. F. R., and Klippel, R. A., The Rat Brain. (Williams and Wilkins, Baltimore, 1963).

  23. Alderman, J. L., and Shellenberger, M. K., J. Neurochem., 22, 937–940 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GARCIA-MUNOZ, M., NICOLAOU, N., TULLOCH, I. et al. Feedback loop or output pathway in striato-nigral fibres?. Nature 265, 363–365 (1977). https://doi.org/10.1038/265363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265363a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing