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conjugate was mixed with the end-labelled chromatosomes at an estimated
stoichiometry of 1 : 1 in 0.5 × TBE buffer.
Nucleoprotein gels and GH5 footprinting. The nucleoprotein gels contained
8% acrylamide (80 : 1 acryl : bisacryl) in 0.5 × TBE and up to 20% glycerol.
Separation of the linker-histone-depleted chromatosomes and the GH5-
reconstituted chromatosomes was achieved by overnight electrophoresis at
4 �C.

The GH5–azidophenacyl conjugates were covalently attached to the
chromatosomal DNA by exposure of the reconstitutes to a standard ultraviolet
transilluminator (312 nm) for 4 min. The crosslinked GH5–DNA complex was
extracted with phenol and was precipitated from the phenol phase with
ethanol1. DNA was cleaved at the point of crosslinking by treatment with 1 M
piperidine at 90 �C for 30 min. The resulting DNA fragments were denatured by
addition of formamide and boiling before separation according to size on
DNA-sequencing gels containing 7 M urea. The buffer in the lower gel tank of
the 20% gel shown in Fig. 3c contained two volumes 1 × TBE and one volume
3 M sodium acetate.
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In the fourth paragraph from the end of this Letter, the values
associated with the long and short data set differences were
switched. The corrected statement should read: ‘‘For the ‘long’
data set, maximum surface winds average 3.6 m s−1 slower for
observations made on Saturdays than those for Fridays (Fig. 2c).
The unbiased ‘short’ data set has Saturday wind observations
averaging 5.0 m s−1 slower than those on Friday; these differences
are highly significant.’’ �
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