Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinoid-X receptor signalling in the developing spinal cord

Abstract

Retinoids regulate gene expression through the action of retinoic acid receptors (RARs) and retinoid-X receptors (RXRs), which both belong to the family of nuclear hormone receptors1,2. Retinoids are of fundamental importance during development2, but it has been difficult to assess the distribution of ligand-activated receptors in vivo. This is particularly the case for RXR, which is a critical unliganded auxiliary protein for several nuclear receptors, including RAR1, but its ligand-activated role in vivo remains uncertain. Here we describe an assay in transgenic mice, based on the expression of an effector fusion protein linking the ligand-binding domain of either RXR or RAR to the yeast Gal4 DNA-binding domain, and the in situ detection of ligand-activated effector proteins by using an inducible transgenic lacZ reporter gene. We detect receptor activation in the spinal cord in a pattern that indicates that the receptor functions in the maturation of limb-innervating motor neurons. Our results reveal a specific activation pattern of Gal4–RXR which indicates that RXR is a critical bona fide receptor in the developing spinal cord.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgenic effector–reporter assay.
Figure 2: Induction of β-galactosidase expression in transgenic mice.
Figure 3: Spatiotemporal shift of β-galactosidase-positive cells in the developing spinal cord.
Figure 4: Induction and inhibition of β-galactosidase expression in E10.5 spinal cord explant cultures of gRXR/lacZr transgenic embryos.

Similar content being viewed by others

References

  1. Manglesdorf, D. J. & Evans, R. M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  Google Scholar 

  2. Kastner, P., Mark, M. & Chambron, P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Marshall, H. et al. Aconserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kastner, P. et al. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124, 313–326 (1997).

    CAS  PubMed  Google Scholar 

  5. Dupé, V. et al. In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′ RARE). Development 124, 399–410 (1997).

    PubMed  Google Scholar 

  6. Wagner, M., Thaller, C., Jessell, T. M. & Eichele, G. Polarizing activity and retinoid synthesis in the floorplate of the neural tube. Nature 345, 819–822 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Horton, C. & Maden, M. Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev. Dynam. 202, 312–323 (1995).

    Article  CAS  Google Scholar 

  8. Durand, B. et al. Activation function 2 (AF2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activation domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5382 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, Y., Minucci, S., Ozato, K., Heyman, R. A. & Ashwell, J. D. Efficient inhibition of activation-induced Fas ligand up-regulation and T cell apoptosis by retinoids requires occupancy of both retinoid X receptors and retinoic acid receptors. J. Biol. Chem. 270, 18672–18677 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Roy, B., Taneja, R. & Chambon, P. Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor α (RARα)-, RARβ-, or RARγ-selective ligand in combination with a retinoid X receptor-specific ligand. Mol. Cell. Biol. 15, 6481–6487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bissonnette, R. P. et al. 9-cis retinoic acid inhibition of activation-induced apoptosis is mediated via regulation of fas ligand and requires retinoic acid receptor and retinoid X receptor activation. Mol. Cell. Biol. 15, 5576–5585 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Botling, J., Castro, D. S., Ösberg, F., Nilsson, K. & Perlmann, T. RAR/RXR heterodimers can be activated through both subunits providing a basis for synergistic transactivation and cellular differentiation. J. Biol. Chem. 272, 9443–9449 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Minucci, S. et al. Retinoid X receptor (RXR) within the RXR–retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol. Cell. Biol. 17, 644–655 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, H.-C., Eichele, G. & Thaller, C. Ligand-bound RXR can mediate retinoid signal transduction during embryogenesis. Development 124, 195–203 (1997).

    CAS  PubMed  Google Scholar 

  15. Allenby, G. et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc. Natl Acad. Sci. USA 90, 30–34 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zimmerman, L. et al. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12, 11–24 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Rossant, J., Zirngibl, R., Cado, D., Shago, M. & Giguère, V. Expression of a retinoic acid response element–hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–1344 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Reynolds, K., Mezey, E. & Zimmer, A. Activity of the β-retinoic acid receptor promoter in transgenic mice. Mech. Dev. 36, 15–29 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Mendelsohn, C., Ruberte, E., LeMeur, M., Morriss-Kay, G. & Chambon, P. Developmental analysis of the retinoic acid-inducible RAR-β2 promoter in transgenic animals. Development 113, 723–734 (1991).

    CAS  PubMed  Google Scholar 

  20. Wagner, M. & Jessell, T. M. Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116, 55–66 (1992).

    CAS  PubMed  Google Scholar 

  21. Colbert, M. C., Linney, E. & LaMantia, A.-S. Local sources of retinoic acid coincide with retinoid-mediated transgene activity during embryonic development. Proc. Natl Acad. Sci. USA 90, 6572–6576 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sockanathan, S. & Jessell, T. M. Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. McCaffery, P. & Dräger, U. C. Hot spots of retinoic acid synthesis in the developing spinal cord. Proc. Natl Acad. Sci. USA 91, 7194–7197 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X., Penzes, P. & Napoli, J. L. Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli. Recognition of retinal as substrate. J. Biol. Chem. 271, 16288–16293 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, D. et al. Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur. J. Biochem. 240, 15–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Niederreither, K., McCaffery, P., Dräger, U. C., Chambon, P. & Dollé, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Perlmann, T. & Jansson, L. Anovel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and Nurr1. Genes Dev. 9, 769–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Nilsson, E. & Lendahl, U. Transient expression of a human β-actin promoter/lacZ gene introduced into mouse embryos correlates with a low degree of methylation. Mol. Repr. Dev. 34, 149–157 (1993).

    Article  CAS  Google Scholar 

  29. Lumsden, A. G. S. & Davies, A. M. Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786–788 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zetterström, R., Solomin, L., Mitsiadis, T., Olson, L. & Perlmann, T. RXR heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1 and Nor1. Mol. Endocrinol. 10, 1656–1666 (1996).

    PubMed  Google Scholar 

  31. Mascrez, B. et al. The RXRα ligand-dependent activation function 2 (AF-2) is important for mouse development. Development (in the press).

Download references

Acknowledgements

We thank S. Sockanathan, T. Jessell and P. Chambon for communicating unpublished results and for discussion; T. Jessell and P. Ljungdahl for Islet-1 and HA antibodies; A.Mata for transfections; E. Nilsson, K. Jansson, Karin Lundströmer and E. Lindqvist for technical support; L. Foley for SR11237; and R. Pettersson for comments. This work was supported by the Swedish Medical Research Council, and the US Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Perlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomin, L., Johansson, C., Zetterström, R. et al. Retinoid-X receptor signalling in the developing spinal cord. Nature 395, 398–402 (1998). https://doi.org/10.1038/26515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26515

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing