Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila oocyte localization is mediated by differential cadherin-based adhesion

Abstract

In a Drosophila follicle the oocyte always occupies a posterior position among a group of sixteen germline cells. Although the importance of this cell arrangement for the subsequent formation of the anterior–posterior axis of the embryo is well documented1,2,3,4, the molecular mechanism responsible for the posterior localization of the oocyte was unknown. Here we show that the homophilic adhesion molecule DE-cadherin5,6,7 mediates oocyte positioning. During follicle biogenesis, DE-cadherin is expressed in germline (including oocyte) and surrounding follicle cells, with the highest concentration of DE-cadherin being found at the interface between oocyte and posterior follicle cells. Mosaic analysis shows that DE-cadherin is required in both germline and follicle cells for correct oocyte localization, indicating that germline–soma interactions may be involved in this process. By analysing the behaviour of the oocyte in follicles with a chimaeric follicular epithelium, we find that the position of the oocyte is determined by the position of DE-cadherin-expressing follicle cells, to which the oocyte attaches itself selectively. Among the DE-cadherin positive follicle cells, the oocyte preferentially contacts those cells that express higher levels of DE-cadherin. On the basis of these data, we propose that in wild-type follicles the oocyte competes successfully with its sister germline cells for contact to the posterior follicle cells, a sorting process driven by different concentrations of DE-cadherin. This is, to our knowledge, the first in vivo example of a cell-sorting process that depends on differential adhesion mediated by a cadherin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of DE-cadherin and Armadillo in the germarial region of the ovary.
Figure 2: Oocyte mislocalization in shg mutant follicles.
Figure 3: Oocyte localization in follicles with a shgR69 mutant germline or follicular epithelium.
Figure 4: Oocyte polarity in shg mutant follicles.
Figure 5: Oocyte localization in follicles with an shg chimaeric follicular epithelium.

Similar content being viewed by others

References

  1. Ray, R. & Schüpach, T. Intercellular signaling and the polarization of body axes during Drosophila oogenesis. Genes Dev. 10, 1711–1723 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. González-Reyes, A. & St Johnston, D. Role of oocyte position in establishment of anterior–posterior polarity in Drosophila. Science 266, 639–642 (1994).

    Article  ADS  PubMed  Google Scholar 

  3. Roth, S., Neumann-Silberberg, F. S., Barcelo, G. & Schüpbach, T. cornichon and the EGF receptor signaling process are necessary for both anterior–posterior and dorsal–ventral pattern formation in Drosophila. Cell 81, 967–977 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. González-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  ADS  PubMed  Google Scholar 

  5. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. ADrosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Dev. Biol. 165, 716–726 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Tepass, U. et al. shotgun encodes Drosophila E-cadherrin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Uemura, T., Oda, H., Kraut, R., Hayashi, S. & Takeichi, M. Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev. 10, 659–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Oda, H., Uemura, T., Shiomi, T., Nagafuchi, A., Tsukita, S. & Takeichi, M. Identification of a Drosophila homologue of α-catenin and its association with the armadillo protein. J. Cell Biol. 121, 1133–1140 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Peifer, M. The product of the Drosophila segment polarity gene armadillo is part of a protein complex resembling the vertebrate adherens junction. J. Cell Sci. 105, 993–1000 (1993).

    CAS  PubMed  Google Scholar 

  10. Carpenter, A. T. egalitarian and the choice of cell fates in Drosophila melanogaster oogenesis. Ciba Found. Symp. Germline Dev. 182, 223–246 (1994).

    CAS  Google Scholar 

  11. Mach, J. M. & Lehmann, R. An Egalitarian–Bicaudal-D complex is essential for oocyte specification and axis determination in Drosophila. Genes Dev. 11, 423–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Peifer, M., Orsulic, S., Sweeton, D. & Wieschaus, E. Arole for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis. Development 118, 1191–1207 (1993).

    CAS  PubMed  Google Scholar 

  13. White, P., Aberle, H. & Vincent, J.-P. Signaling and adhesion activities of mammalian β-catenin and plakoglobin in Drosophila. J. Cell Biol. 140, 183–195 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oda, H., Uemura, T. & Takeichi, M. Phenotypic analysis of null mutants of DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes to Cells 2, 29–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Ran, B., Bopp, R. & Suter, B. Null alleles reveal novel requirements for Bic-D during Drosophila oogenesis and zygotic development. Development 120, 1233–1242 (1994).

    CAS  PubMed  Google Scholar 

  16. Mahowald, A. P. & Strassheim, J. M. Intercellular migration of centrioles in the germarium of Drosophila melanogaster. An electron microscopic study. J. Cell Biol. 45, 306–320 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Nose, A., Nagafuchi, A. & Takeichi, M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54, 993–1001 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Friedlander, D. R., Mege, R.-M., Cunningham, B. A. & Edelman, G. M. Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces. Proc. Natl Acad. Sci. USA 86, 7043–7047 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206–209 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1995).

    Article  Google Scholar 

  23. Steinberg, M. S. Adhesion in development: a historical overview. Dev. Biol. 180, 377–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, T. & Harrison, S. D. in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology (eds Goldstein, L. S. B. & Fyrberg, E. A.) 655–682 (Academic, San Diego, (1994)).

    Google Scholar 

  25. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380 (1994).

    CAS  PubMed  Google Scholar 

  26. Patel, N. H., Snow, P. M. & Goodman, C. S. Characterization and cloning of Fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell 48, 975–988 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1759 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ephrussi, A., Dickinson, L. K. & Lehmann, R. oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Neumann-Silberberg, F. S. & Schüpbach, T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein. Cell 75, 165–174 (1993).

    Article  Google Scholar 

  30. King, R. C. Ovarian Development in Drosophila melanogaster (Academic, New York, (1970)).

    Google Scholar 

Download references

Acknowledgements

We thank T. Uemura, M. Peifer, R. Lehmann and P. Lasko for providing reagents; the Developmental Studies Hybridoma Bank for the 7G10 antibody; H. Lipshitz and H. Krause for reading the manuscript; and R. Avancini for the DE-cadherin staining of egl mutant ovaries. This research was supported by a grant by the National Cancer Institute of Canada (to U.T.) with funds from the Terry Fox run.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Godt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godt, D., Tepass, U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391 (1998). https://doi.org/10.1038/26493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing